高考专题训练二十八几何证明选讲(选修4-1)班级________姓名_______时间:45分钟分值:100分总得分_______一、填空题(每小题6分,共30分)1.(2011·陕西)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则BE=________.解析:由∠B=∠D,AE⊥BC,知△ABE∽△ADC,∴AEAC=ABAD,∴AE=ABAD·AC=6×412=2,∴BE=AB2-AE2=32=42.答案:422.(2011·湖南)如图,A、E是半圆周上的两个三等分点,直线BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为________.解析:如图所示,∵A、E是半圆周上两个三等分点,∴△ABO和△AOE均为正三角形.∴AE=BO=12BC=2.∵AD⊥BC,∴AD=22-12=3,BD=1.又∠BOA=∠OAE=60°,∴AE∥BD.∴△BDF∽△EAF,∴DFAF=BDAE=12.∴AF=2FD,∴3AF=2(FD+AF)=2AD=23,∴AF=233.答案:2333.(2011·深圳卷)如图,A,B是两圆的交点,AC是小圆的直径,D和E分别是CA和CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,则DE=________.解析:连接AB,设BC=AD=x,结合图形可得△CAB与△CED相似,于是ACEC=CBCD.即4x+10=x4+x⇒x=2.又因为AC是小圆的直径,所以∠CBA=90°,由于∠CDE=∠CBA,所以∠CDE=90°.在直角三角形CDE中,DE=CE2-CD2=122-62=63.答案:634.(2011·佛山卷)如图,过圆外一点P作⊙O的割线PBA与切线PE,E为切点,连接AE、BE,∠APE的平分线分别与AE、BE相交于点C、D,若∠AEB=30°,则∠PCE=________.解析:由切割线性质得:PE2=PB·PA,即PEPA=PBPE,∴△PBE∽△PEA,∴∠PEB=∠PAE,又△PEA的内角和为2(∠CPA+∠PAE)+30°=180°,所以∠CPA+∠PAE=75°,即∠PCE=75°.答案:75°5.如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=a2,点E,F分别为线段AB,AD的中点,则EF=________.分析:本题考查勾股定理及三角形中位线的性质.解析:连接BD、DE,由题意可知DE⊥AB,DE=32a,BC=DE=32a,∴BD=a22+32a2=a,∴EF=12BD=a2.答案:a2二、解答题(每小题10分,共70分)6.如图,已知△ABC的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.(1)求证:B,D,H,E四点共圆;(2)求证:CE平分∠DEF.证明:(1)在△ABC中,因为∠B=60°,所以∠BAC+∠BCA=120°.因为AD,CE是角平分线,所以∠HAC+∠HCA=60°,故∠AHC=120°.于是∠EHD=∠AHC=120°.因为∠EBD+∠EHD=180°,所以B,D,H,E四点共圆.(2)连接BH,则BH为∠ABC的平分线,所以∠HBD=30°.由(1)知B,D,H,E四点共圆,所以∠CED=∠HBD=30°.又∠AHE=∠EBD=60°,由已知可得EF⊥AD,可得∠CEF=30°,所以CE平分∠DEF.7.如图所示,⊙O为△ABC的外接圆,且AB=AC,过点A的直线交⊙O于D,交BC的延长线于F,DE是BD的延长线,连接CD.(1)求证:∠EDF=∠CDF;(2)求证:AB2=AF·AD.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵四边形ABCD是⊙O的内接四边形,∴∠CDF=∠ABC.又∠ADB与∠EDF是对顶角,∴∠ADB=∠EDF.又∠ADB=∠ACB,∴∠EDF=∠CDF.(2)由(1)知∠ADB=∠ABC.又∵∠BAD=∠FAB,∴△ADB∽△ABF,∴ABAF=ADAB,∴AB2=AF·AD.8.(2011·辽宁)如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(1)证明:CD∥AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.证明:(1)因为EC=ED,所以∠EDC=∠ECD.因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA,故∠ECD=∠EBA.所以CD∥AB.(2)由(1)知,AE=BE,因为EF=EG,故∠EFD=∠EGC,从而∠FED=∠GEC.连接AF,BG,则△EFA≌△EGB,故∠FAE=∠GBE.又CD∥AB,∠EDC=∠ECD,所以∠FAB=∠GBA,所以∠AFG+∠GBA=180°,故A,B,G,F四点共圆.9.已知,如图,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交直线AC于点E,交AD于点F,过G作⊙O的切线,切点为H.求证:(1)C,D,F,E四点共圆;(2)GH2=GE·GF.证明:(1)连接CB,∵∠ACB=90°,AG⊥FG,又∵∠EAG=∠BAC,∴∠ABC=∠AEG.∵∠ADC=180°-∠ABC=180°-∠AEG=∠CEF,∴∠ADC+∠FDC=∠CEF+∠FDC=180°,∴C,D,F,E四点共圆.(2)由C,D,F,E四点共圆,知∠GCE=∠AFE,∠GEC=∠GDF,∴△GCE∽△GFD,故GCGF=GEGD,即GC·GD=GE·GF.∵GH为圆的切线,GCD为割线,∴GH2=GC·GD,∴GH2=GE·GF.10.(2011·课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.(1)证明:C,B,D,E四点共圆;(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.解:(1)证明:连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB.又∠DAE=∠CAB,从而△ADE∽△ACB.因此∠ADE=∠ACB.所以C,B,D,E四点共圆.(2)m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.从而HF=AG=5,DF=12(12-2)=5.故C,B,D,E四点所在圆的半径为52.11.(2011·哈师大附中、东北师大附中、辽宁省实验中学第一次联考)已知四边形PQRS是圆内接四边形,∠PSR=90°,过点Q作PR、PS的垂线,垂足分别为点H、K.(1)求证:Q、H、K、P四点共圆;(2)求证:QT=TS.证明:(1)∵∠PHQ=∠PKQ=90°,∴Q、H、K、P四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS.12.(2011·河南省教学质量调研)如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB、FC.(1)求证:FB=FC;(2)求证:FB2=FA·FD;(3)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.解:(1)证明:∵AD平分∠EAC.∴∠EAD=∠DAC.∵四边形AFBC内接于圆,∴∠DAC=∠FBC.∵∠EAD=∠FAB=∠FCB,∴∠FBC=∠FCB,∴FB=FC.(2)证明:∵∠FAB=∠FCB=∠FBC,∠AFB=∠BFD,∴△FBA∽△FDB,∴FBFD=FAFB,∴FB2=FA·FD.(3)∵AB是圆的直径,∴∠ACB=90°.∵∠EAC=120°,∴∠DAC=12∠EAC=60°,∠BAC=60°.∴∠D=30°.∵BC=6cm,∴AC=23cm,∴AD=2AC=43cm.