高电压技术2010总复习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

气体中带电质点产生的方式:热游离,光游离,碰撞游离,表面游离气体中带电质点消失的方式:流入电极、逸出气体空间、复合巴申定律及其适用范围:击穿电压与气体相对密度和极间距离乘积之间的关系。两者乘积大于0.26cm时,不再适用流注理论:考虑了空间电荷对原有电场的影响和空间光电离的作用,适用两者乘积大于0.26cm时的情况电晕放电:在大曲率电极附近很薄的一层空气中将具备自持放电的条件,放电仅局限于大曲率电极附近很小的范围内而整个间隙尚未击穿。以开始出现电晕时的电压为电晕起始电压极性效应:由于高场强电极极性的不同,而造成电极电晕起始电压和间隙击穿电压的不同。伏秒特性:工程上用气隙上出现的电压最大值与放电时间的关系来表征气隙在冲击电压的击穿特性。50%击穿电压:施加10相同的冲击电压有4-6次被击穿了的这个电压。电场形式对放电电压的影响:均匀电场无极性效应、各类电压形式放电电压基本相同、分散性小;极不均匀电场中极间距离为主要影响因素、极性效应明显。电压波形对放电电压的影响:电压波形对均匀和稍不均匀电场影响不大;对极不均匀电场影响相当大.完全对称的极不均匀场:棒棒间隙极大不对称的极不均匀场:棒板间隙气体的状态对放电电压的影响:湿度、密度、海拔高度的影响。气体的性质对放电电压的影响:在间隙中加入高电强度气体,可大大提高击穿电压,主要指一些含卤族元素的强电负性气体,如SF6.提高气体放电电压的措施:电极形状的改进,空间电荷对原电场的畸变作用,极不均匀场中屏障的采用,提高气体压力的作用,高真空,高电气强度气体SF6的采用沿面闪络:沿着固体介质表面发展的气体放电现象。多发生在绝缘子、套管与空气的分界面上。提高沿面放电电压的措施:a.屏障b.屏蔽c.表面处理d.应用半导体材料e.阻抗调节完全气隙击穿的三个必备条件:a达到最低的静态击穿电压b在气隙中能引起电子崩并导致流柱和主放电的有效电子c需要一定的时间电介质的极化:在电场的作用下,电荷质点会沿电场方向产生有限的位移现象,并产生电矩(偶极矩)。介电常数:电介质极化的强弱可用介电常数的大小来表示,与电介质分子的极性强弱有关。极性电介质和非极性电介质:具有极性分子的电介质称为极性电介质。由中性分子构成的电介质。极化的基本形式:电子式、离子式(不产生能量损失)偶极子极化、夹层介质界面极化(有能量损失)。在电介质上加上直流电压,初始瞬时由于各种极化存在,流过介质的电流很大,之后随时间变化经过一定的时间后,极化过程结束,流过介质的电流趋于稳定值,这一稳定电流称为泄漏电流,对应的电阻称为绝缘电阻。气体的电导:主要来自于外界射线使分子发生电离和强电场作用下气体电子的碰撞电离。液体的电导:离子电导和电泳电导固体的电导:离子电导和电子电导电介质的损耗:a.介质损耗针对的是交流电压作用下介质的有功功率损耗b.介质损耗一般用介损角的正切值来表示。介质在电压下的能量损坏:a由电导引起b有损极化引起提高液体电介质击穿电压的措施:提高油品质,采用覆盖、绝缘层、极屏障等措施。固体电介质的击穿:电击穿、热击穿、电化学击穿影响固体电介质击穿电压的主要因素:电压作用时间温度电场均匀程度受潮累积效应机械负荷。绝缘电阻与吸收比的测量:用兆欧表来测量电气设备的绝缘电阻;吸收比K定义为加压60s时的绝缘电阻与15s时的绝缘电阻比值。K恒大于1,且越大表示绝缘性能越好。大容量电气设备中,吸收现象延续很长时间,吸收比不能很好地反映绝缘的真实状态,可用极化指数再判断。测量绝缘电阻能有效地发现总体绝缘质量欠佳;绝缘受潮;两极间有贯穿性的导电通道;绝缘表面情况不良。泄漏电流的测量:测量泄漏电流从原理上来说,与测量绝缘电阻是相似的,能发现一些尚未完全贯通的集中性缺陷,原因在于:在试品上的直流电压要比兆欧表的工作电压高得多,故能发现兆欧表所不能发现的某些缺陷。加在试品上的直流电压是逐渐增大的,可以在升压过程中监视泄漏电流的增长动向。介质损耗角正切的测量:tanδ能反映绝缘的整体性缺陷(例如全面老化)和小电容试品中的严重局部性缺陷。根据tanδ随电压而变化的曲线,可判断绝缘是否受潮、含有气泡及老化的程度。局部放电的测量:局部放电:高压电气设备的绝缘内部总是存在一些缺陷,如气泡空隙、杂质等。由于这些异物的电导和介电常数不同于绝缘物,故在外加电场作用下,这些异物附近将具有比周围更高的场强,有可能引起该处物质产生电离放电现象,称为局部放电。三比较方法:若个别试验项目不合格,达不到规程的要求可使用三比较方法。a与同类型设备作比较:同类型设备在同样条件下所得的试验结果应该大致相同,若差别很大就可能存在问题。b在同一设备的三相试验结果之间进行比较:若有一相结果相差达50%以上,该相很可能存在缺陷。c与该设备技术档案中的历年试验数据进行比较:若性能指标有明显下降情况,即可能出现新的缺陷。电气设备的试验电压标准称为电气设备的试验水平。绝缘的高电压试验:在高压试验室用工频交流高压、直流高压、雷电冲击高压、操作冲击高压等模拟电气设备的绝缘在运行中受到的工作电压,用以考验各种绝缘耐受这些高电压作用的能力。特点:a具有破坏性试验的性质。b一般放在非破坏性试验项目合格通过之后进行,以避免或减少不必要的损失。工频高电压的产生:a通常采用高压试验变压器或其串级装置来产生。b对电缆、电容器等电容量较大的被试品,可采用串联谐振回路来获得试验用的工频高电压。c工频高压装置是高压试验室中最基本的设备,也是产生其他类型高电压的设备基础部件。高压试验变压器的特点:a试验变压器本身应有很好的绝缘,但绝缘裕度小,试验过程中要严格限制过电压。b试验变压器容量一般不大c外观上的特点:油箱本体不大而其高压套管又长又大。d试验变压器与连续运行时间不长,发热较轻,因而不需要复杂的冷却系统。e漏抗大,短路电流较小,可降低机械强度方面的要求,节省制造费用。250kv以上的试验变压器通常按1KVA/1KV的原则来选择容量。绝缘的工频耐压试验:a工频交流耐压试验是检验电气设备绝缘强度的最有效和最直接的方法。b工频耐压试验可用来确定电气设备绝缘耐受电压的水平,判断电气设备能否继续运行,是避免其在运行中发生绝缘事故的重要手段。c工频耐压试验时,对电气设备绝缘施加比工作电压高得多的试验电压,这些试验电压反映了电气设备的绝缘水平。工频高压试验的实施方法:a规定的升压速度提升作用在被测试品TO上的电压,直到等于所需的试验电压U为止,这时开始计算时间。b了让有缺陷的试品绝缘来得及发展局部放电或完全击穿,达到U后还要保持一段时间,一般取一分钟。c果在此期间没有发现绝缘击穿或局部损伤(可通过声响、分解出气体、冒烟、电压表指针剧烈摆动、电流表指示急剧增大等异常现象作出判断)的情况,即可认为该试品的工频耐压试验合格通过。直流高电压的产生:将工频高电压经高压整流器而变换成直流高电压。利用倍压整流原理制成的直流高压串级装置(或称串级直流高压发生器)能产生出更高的直流试验电压。直流高压试验的特点:最常见的直流高压试验为某些交流电气设备(油纸绝缘高压电缆、电力电容器、旋转电机等)的绝缘预防性试验。和交流耐压试验相比主要有以下一些特点:只有微安级泄漏电流,试验设备不需要供给试品的电容电流,试验设备的容量较小,可以做的很轻巧,便于现场试验。试验时可同时测量泄漏电流,由所得得“电压-电流”曲线能有效地显示绝缘内部的集中性缺陷或受潮。在直流高压下,局部放电较弱,不会加快有采购绝缘材料的分解或老化变质,一定程度具有非破坏性试验的性质。直流电压下,绝缘内的电压分布由电导决定,因而与交流运行电压下的电压分布不同,所以交流电气设备的绝缘考验不如交流耐压试验那样接近实际。冲击高电压试验:研究电气设备在运行中遭受雷电过电压和操作过电压的作用时的绝缘性能。许多高压试验室中都装设了冲击电压发生器,用来产生试验用的雷电冲击电压波和操作冲击电压波。高压电气设备在出厂试验、型式试验时或大修后都必须进行冲击高压试验。多级冲击电压发生器:单级冲击电压发生器能产生的最高电压一般不超过200~300kV。因而采用多级叠加的方法来产生波形和幅值都能满足需要的冲击高电压波。内绝缘冲击耐压试验:电气设备内绝缘的雷电冲击耐压试验采用三次冲击法,即对被试品施加三次正极性和三次负极性雷电冲击试验电压。(1.2/50us全波)。对变压器和电抗器类设备的内绝缘,还要进行雷电冲击截波(1.2/2~/2-5us)耐压试验,其对绕组绝缘(特别是纵绝缘)的考验往往更加严格。外绝缘冲击耐压试验:可采用15次冲击法,即对被测试品施加正、负极性冲击全波试验电压各16次,相邻两次冲击的时间间隔应不小于1min。在每组15次冲击的试验中,如果击穿或闪络的闪数不超过2次,即可认为该外绝缘试验合格。内、外绝缘的操作冲击高压试验的方法与雷电冲击全波试验完全相同。高电压的测量技术:高电压试验除了要有产生各种试验电压的高压设备,还必须要有能测量这些高电压的仪器和设备。电力系统中,广泛应用电压互感器配上低电压表来测量高电压;但此法在试验室中用得很少。试验室条件下广泛应用高压静电电压表、峰值电压表、球隙测压器、高压分压器等仪器测量高电压。国标规定,高电压的测量误差一般应控制在±3%以内。静电电压表的特点:静电电压表测交流时为其电压有效值,测带脉动的直流时近似为其平均值。静电电压表不能用于测量冲击电压。静电电压表的内阻很高,在测量时几乎不会改变被测试样上的电压。大气中工作的高压静电电压表量程上限在50-250kV;SF6气体中可达500-600kV。更高的电压需配合分压器使用。峰值电压表:峰值电压表的制成原理通常有两种,一种是利用整流电容电流测量,另一种是利用整流充电电压测量。峰值电压表可分为交流峰值电压表和冲击峰值电压表。球隙测压器:测量球隙由一对相同直径的金属球构成,测量误差2%-3%,满足大多数工程测试的要求。当球隙距离d与直径D之比不大时,球隙间的电场为稍不均匀电场,其击穿电压决定于球隙间的距离。能直接测量高达数兆伏的各类高电压峰值。球隙的优点:击穿时延小,放电电压分散性小,具有比较稳定的放电电压值和较高的测量精度。50%冲击放电电压与静态(交流或直流)放电电压的幅值几乎相等。由于湿度对稍不均匀场的影响较小,可不必对湿度进行校正。高压分压器:被测电压很高时,采用高压分压器来分出一小部分电压,然后利用静电电压表、峰值电压表、高压示波器等来测量。对分压器的技术要求:要求分压比具有一定的准确度和稳定性(幅值误差要小);每一个分压器均由高压臂和低压臂组成,在低压臂上得到的就是分给测量仪器的低电压,总电压与该低电压之比称为分压比K。分出的电压与被测高电压波形的相似性(波形畸变要小)。各类测量方式的应用场合:静电电压表可测交流和直流,但不能测冲击电压。峰值电压表可用来测交流电压和冲击电压峰值。球隙可用来测高达数兆伏的交流、冲击峰值和直流电压。电压特别高时,需配合分压器使用。直流高压测量只能使用电阻分压器。交流和冲击高压可使用电阻、电容和阻容分压器。过电压的概念:指电力系统中出现的对绝缘有危险的电压升高和电位差升高。波阻抗与电阻的区别:波阻抗不消耗能量,只是决定导线从外部吸收或传递能量的大小。波阻抗与线路的长度无关,只与导线单位长度的电感和电容有关。电阻要消耗能量。电阻的大小由导体的材料,长度,横截面积有关。线路末端的折射、反射:末端开路反射,在反射波所到之处电压提高1倍,而电流降为0。末端短路反射在反射波所到之处电流提高1倍,而电压降为0。末端接集中负载时的折反射当R和z1不相等时,来波将在集中负载上发生折反射。行波通过串联电感和并联电容:波通过电感(电容)时的最大陡度公式。波穿过电感初瞬,在电感前发生电压正的全反射,使电感前电压提高1倍。波旁过电容初瞬,则在电容前发生电压负的全反射,使电容前的电压下降为0。由于反射波会使电感前电压提高,可能危及绝缘,所以常用并联电容降低波陡度。绕组中的波过程:变压器在雷电冲击波作用瞬间,可等值为一个电容,称为入口电容。在末端接地的单相绕组中,最大电压将出现在绕组首端附近,其值可达1.4U

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功