习题3.41221231323311ln2ln2ln2ln2ln200000:111..54,13,11.54,(5),,42541(5)111114(5)5.28836ln212.(1ln22xxxxxxdxIxuxuxudxuduxuIuduudxuuuxedxxdexeedxe求下列各定积分1/2222200/22224000000442220022).3.1sincos(sin)131sin(1sin).2422164.sincoscoscossin.995.99ln(9)10ln3.2226.xxdxttdtxtttdtIIxxdxxdxxxxdxxxxdxxxxx12266602000112200943393322233000032211113sin(1cos2)(sin2).222264137.442arcsin.2223113458.111(1).22889.coscos2cosdxtdttdtttxxxxdxxxxdxxdxuduuxxdx32200322200/222000/2/2/2/20cos2cossin442coscoscos.3311110.cos2cos22coscos()22220,21;(1)sin()(1)!!2sin().!!2nnnnnnnxxdxxxdxxdxxxdxxdxudutdtnktdtntdtn2212200!!(1)!!11.()(sin)cos!!(1)!!2nannnnaxdxxattdtnnn是偶数;是奇数./2110/2660022320000320033010!!15612.sin.11!!69353513.sin2sin2.2642216111114.(sin)(1cos2)sin2223411sin2sin264211cos2cos26464xdxxdxuduxxdxxxdxxxdxxxxxdxxdxxx00330/4/442200/4/422200/4/42200/43/400101cos241sin2.6486415.tantan(sec1)tansectantantan(sec1)112tantan|1.34343416.arcsinaxdxxxdxxxdxxxdxxdxxdxxdxxxxdxx110011220022222200022222222002222rcsin|arcsin11.222117.ln()ln()ln()ln()ln()ln()||.18.()[,].()baxxdxxdxxxxxadxxxxaxdxxaxadxaxaxaaaafxabfxd设在连续证明21011003200223222200()(()).(),0,1,(),()()(())()(()).119.()().2,0,0,,1()()2baaaaaxbafabaxdxxabatabdxbadtfxdxbafabatdtbafabaxdxxfxdxxfxdxxtxtxataxfxdxxfxdx令则故证明令则时时故证证220011()().22aatftdtxfxdt110020.(1)(1).1,0,1,0.,mnnmxxdxxxdxxtxxtdxdt证明令则时时故证10110100000000000000(1)(1)(1)(1).21.,(),()()().()()()()()()()mnmnmnnmxtxxxttxtaxxxxxxdxttdtttdtxxdxfxfxdxdtftxtdxfxdxdttfxdxtfxdxdtxfxdxtftdtxftdttftdt利用分部积分公式证明若连续则证0/2000000000()().22.(sin)(sin).,0,,,,(sin)()(sin())()(sin)(sin)(sin)(sin)(sin).2xftxtdtxfxdxfxdxxtxtxdxdtxfxdxtftdttftdtftdttftdtftdtxfxdxx利用换元积分法证明时时故证0000/20/20/2/2/200(sin)(sin),1(sin)(sin)211(sin)(sin)22,/2,/2,,0,,(sin)(sin())(sin),(sin)(sinfxdxftdtxfxdxftdtftdtftdtuttutududtftdtfudufuduxfxdxfx令则时时/20).dx20/2/2222000/20000sin23..1cossinsincos1cos1cos1cosarctancos|.424.()(,),,:(1)()()()11(2)lim()(TxxxxxdxxxxxdxdxdxxxxxfxTxFxfxdxftdtTTftdtfxT利用上题结果求设函数在上连续以为周期证明函数也以为周期;解000000000000000).(1)()()()()()()()()()()()()()().11(2)()()1()TTxTTTxxTxTTxTTxxTTxdxxTFxTfxdxftdtTxfxdxfxdxftdtftdtTxfxdxfxdxftdtftdtTxfxdxftdtFxTftdtfxdxxTxfxdxxT证00000()().()(,),11()lim()()lim0.11lim()().xxTxxxTxFxftdtxFxTFxftdtfxdxxTxftdtfxdxxT在上连续以为周期,故有界,于是000000000000000025.(),()0,()0,()(,).()0.(,),,,),.0()0.()()TxTxTxTTxxxfxfxfxdxfxxxTfxfxxTfxxTmmfxdxmdxmTfxdxfxd设是以T为周期的连续函数且证明:在区间内至少有两个根为明确起见设如果在没有根则由连续函数的中间值定理在(恒正设其最小值为则,由周期性和假设证,010001001000001100110000,.,).,),()()0,(,)(,),()()()0,.(,)(,)()(,).xTxxTxxxxfxxTxfxxTfxTfxfxxxxTfxdxfxdxfxdxfxxxxTfxxxT矛盾故在(至少有一个根若在(再无其它根由于在和恒正矛盾故在或至少还有一个根根,即在区间内至少有两个根26.求定积分244022444400222440022222/2200222sincos..sincossincossincossincos2sincos4(sin2)1121sin21sin22282sin2mmdxdxxxmdxdxdxmdxxxxxdxdxdxdxxxxxxxdxdxdxdxxxxdxx其中为正整数被积函数以2为周期故周期为解,/2/2200/22202440cot242csc21cot2444arctan2|22.2cot2112222.sincosmdxdxxdxduuxudxdxmxx