高三物理总复习高中物理典型例题集锦(五)【电磁感应部分】1.如图25-1所示为矩形的水平光滑导电轨道abcd,ab边和cd边的电阻均为5R0,ad边和bc边长均为L,ad边电阻为4R0,bc边电阻为2R0,整个轨道处于与轨道平面垂直的匀强磁场中,磁感强度为B。轨道上放有一根电阻为R0的金属杆mn,现让金属杆mn在平行轨道平面的未知拉力F作用下,从轨道右端以速率V匀速向左端滑动,设滑动中金属杆mn始终与ab、cd两边垂直,且与轨道接触良好。ab和cd边电阻分布均匀,求滑动中拉力F的最小牵引功率。分析与解:mn金属杆从右端向左端匀速滑动切割磁感线产生感应电动势,mn相当于电源,其电路为内电路,电阻为内电阻。当外电阻最大时,即当mn滑到距离ad=(2/5)ab时,此时电阻Rmadn=Rmbcn=8R0时,外阻最大值Rmax=4R0,这时电路中电流最小值:Imin=ε/(Rmax+r)=BLV/(4R0+R0)=BLV/5R0所以,Pmin=FminV=BLIminV=BLVBLV/5R0=B2L2V2/5R02.如图26-1所示,用密度为D、电阻率为ρ的导线做成正方形线框,从静止开始沿竖直平面自由下落。线框经过方向垂直纸面、磁感应强度为B的匀强磁场,且磁场区域高度等于线框一边之长。为了使线框通过磁场区域的速度恒定,求线框开始下落时的高度h。(不计空气阻力)分析与解:线框匀速通过磁场的条件是受到的竖直向上的安培力与重力平衡,即:F安=mg[1]设线框每边长为L,根据线框进入磁场的速度为,则安培力可表达为:F安=BIL=[2]设导线横截面积为S,其质量为:m=4LSD[3]其电阻为:R=ρ4L/S[4]联立解[1]、[2]、[3]、[4]式得:h=128D2ρ2g/B4想一想:若线框每边长为L,全部通过匀强磁场的时间为多少?(t=2L/V)线框通过匀强磁场产生的焦耳热为多少?(Q=2mgL)3.如图27-1所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。试求:(1)ab、cd棒的最终速度,(2)全过程中感应电流产生的焦耳热。分析与解:ab下滑进入磁场后切割磁感线,在abcd电路中产生感应电流,ab、cd各受不同的磁场力作用而分别作变减速、变加速运动,电路中感应电流逐渐减小,当感应电流为零时,ab、cd不再受磁场力作用,各自以不同的速度匀速滑动。全过程中系统内机械能转化为电能再转化为内能,总能量守恒。(1)ab自由下滑,机械能守恒:mgh=(1/2)mV2[1]由于ab、cd串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度Lab=3Lcd,故它们的磁场力为:Fab=3Fcd[2]在磁场力作用下,ab、cd各作变速运动,产生的感应电动势方向相反,当εab=εcd时,电路中感应电流为零,(I=0),安培力为零,ab、cd运动趋于稳定,此时有:BLabVab=BLcdVcd所以Vab=Vcd/3[3]ab、cd受磁场力作用,动量均发生变化,由动量定理得:Fab△t=m(V-Vab)[4]Fcd△t=mVcd[5]联立以上各式解得:Vab=(1/10),Vcd=(3/10)(2)根据系统能量守恒可得:Q=△E机=mgh-(1/2)m(Vab2+Vcd2)=(9/10)mgh说明:本题以分析ab、cd棒的受力及运动情况为主要线索求解。注意要点:①明确ab、cd运动速度稳定的条件。②理解电磁感应及磁场力计算式中的“L”的物理意义。③电路中的电流、磁场力和金属棒的运动之间相互影响制约变化复杂,解题时抓住每一瞬间存在Fab=3Fcd及终了状态时Vab=(1/3)Vcd的关系,用动量定理求解十分方便。④金属棒所受磁场力是系统的外力,且Fab≠Fcd时,合力不为零,故系统动量不守恒,只有当Lab=Lcd时,Fab=Fcd,方向相反,其合力为零时,系统动量才守恒。4.如图32-1所示,两根互相平行、间距d=0.4米的金属导轨,水平放置于匀强磁场中,磁感应强度B=0.2T,磁场垂直于导轨平面,金属滑杆ab、cd所受摩擦力均为f=0.2N。两根杆电阻均为r=0.1Ω,导轨电阻不计,当ab杆受力F=0.4N的恒力作用时,ab杆以V1做匀速直线运动,cd杆以V2做匀速直线运动,求速度差(V1-V2)等于多少?分析与解:在电磁感应现象中,若回中的感应电动势是由导体做切割磁感线运动而产生的,则通常用ε=BlVsinθ来求ε较方便,但有时回路中的电动势是由几根棒同时做切割磁感线运动产生的,如果先求出每根导体棒各自的电动势,再求回路的总电动势,有时就会涉及“反电动势”而超纲。如果取整个回路为研究对象,直接将法拉第电磁感应定律ε=用于整个回路上,即可“一次性”求得回路的总电动势,避开超纲总而化纲外为纲内。cd棒匀速向右运动时,所受摩擦力f方向水平向左,则安培力Fcd方向水平向右,由左手定则可得电流方向从c到d,且有:Fcd=IdB=fI=f/Bd①取整个回路abcd为研究对象,设回路的总电势为ε,由法拉第电磁感应定律ε=,根据B不变,则△φ=B△S,在△t时间内,△φ=B(V1-V2)△td所以:ε=B(V1-V2)△td/△t=B(V1-V2)d②又根据闭合电路欧母定律有:I=ε/2r③由式①②③得:V1-V2=2fr/B2d2代入数据解得:V1-V2=6.25(m/s)5.如图33-1所示,线圈abcd每边长l=0.20m,线圈质量m1=0.10kg、电阻R=0.10Ω,砝码质量m2=0.14kg.线圈上方的匀强磁场磁感强度B=0.5T,方向垂直线圈平面向里,磁场区域的宽度为h=l=0.20m.砝码从某一位置下降,使ab边进入磁场开始做匀速运动.求线圈做匀速运动的速度.解析:该题的研究对象为线圈,线圈在匀速上升时受到的安培力F安、绳子的拉力F和重力m1g相互平衡,即F=F安+m1g.①砝码受力也平衡:F=m2g.②线圈匀速上升,在线圈中产生的感应电流I=Blv/R,③因此线圈受到向下的安培力F安=BIl.④联解①②③④式得v=(m2-m1)gR/B2l2.代入数据解得:v=4(m/s)6.如图34-1所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间距离为l,导轨平面与水平面的夹角为θ.在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B.在导轨的A、C端连接一个阻值为R的电阻.一根垂直于导轨放置的金属棒ab,质量为m,从静止开始沿导轨下滑.求ab棒的最大速度.(已知ab和导轨间的动摩擦因数为μ,导轨和金属棒的电阻不计)解析:本题的研究对象为ab棒,画出ab棒的平面受力图,如图34-2.ab棒所受安培力F沿斜面向上,大小为F=BIl=B2l2v/R,则ab棒下滑的加速度a=[mgsinθ-(μmgcosθ+F)]/m.ab棒由静止开始下滑,速度v不断增大,安培力F也增大,加速度a减小.当a=0时达到稳定状态,此后ab棒做匀速运动,速度达最大.mgsinθ-(μmgcosθ+B2l2v/R)=0.解得ab棒的最大速度vm=mgR(sinθ-μcosθ)/B2l2.7.电阻为R的矩形导线框abcd,边长ab=l、ad=h、质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图35-1所示.若线框恰好以恒定速度通过磁场,线框内产生的焦耳热是.(不考虑空气阻力)解析:线框以恒定速度通过磁场,动能不变,重力势能减少,减少的重力势能转化为线框内产生的焦耳热.根据能的转化与守恒定律得:Q=mg·2h=2mgh.8.如图36-1所示,A是一边长为l的正方形线框,电阻为R.现维持线框以恒定的速度v沿x轴运动,并穿过图中所示的匀强磁场B区域.取逆时针方向为电流正方向,线框从图示位置开始运动,则线框中产生的感应电流i随时间t变化的图线是图36-2中的:[]解析:由于线框进入和穿出磁场时,线框内磁通量均匀变化,因此在线框中产生的感应电流大小不变.根据楞次定律可知,线框进入磁场时感应电流的方向与规定的正方向相同,穿出磁场时感应电流的方向与规定的正方向相反,因此应选B.想一想:若将题39改为:以x轴正方向作为力的正方向,则磁场对线框的作用力F随时间t的变化图线为图36-3中的:[]同理可分析得正确答案应选C.东北师范大学附属中学网校(版权所有不得复制)高三物理总复习高中物理典型例题集锦(五)【电磁感应部分】9.如图37-1所示,带正电的粒子以一定的初速度v0沿中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,已知板长为L,板间的电压为U,带电粒子的带电量为q,粒子通过平行金属板的时间为T,不计粒子的重力,则[]A.粒子在前T/2时间内,电场力对粒子做功为(1/4)qUB.粒子在后T/2时间内,电场力对粒子做功为(3/8)qUC.粒子在下落前d/4和后d/4内,电场力做功之比为1∶2D.粒子在下落前d/4和后d/4内,通过的时间之比为1∶3答案:B10.如图38-1所示,三平行金属板a、b、c接到电动势分别为1、2的电源上,已知1<2,在A孔右侧有一带负电的质点,由静止释放后向右运动穿过B到达P点后再返回A孔,则[]A.只将b板右移一小段距离后再释放该质点,质点仍运动到P点后返回B.只将b板右移一小段距离后再释放该质点,质点将达不到P点C.只将b板右移稍长距离后再释放该质点,质点能穿过C孔D.若将质点放在C孔左侧由静止释放,质点将能穿过A孔答案:D11.如图39-1所示,U型线框abcd处于匀强磁场中,磁场的磁感强度为B,方向垂直于纸面向内.长度为L的直导线MN中间串有一个电压表跨接在ab与cd上且与ab垂直,它们之间的接触是完全光滑的.R为电阻,C为电容器,现令MN以速度v0向右匀速运动,用U表示电压表的读数,q表示电容器所带电量,C表示电容器电容.F表示对MN的拉力.设电压表体积很小,其中线圈切割磁感线对MN间的电压的影响可以忽略不计.则[]A.U=BLv0F=v0B2L2/RB.U=BLv0F=0C.U=0F=0D.U=q/CF=v0B2L2/R答案:C12.密立根油滴实验如图40-1所示:在电介质为空气的电容器中,观测以某速度送入的一个油滴,这油滴经过一会儿达到一个恒定的速度v1,这时加上电场强度为E的匀强电场,再过一会儿达到另一恒定速度v2.在这样短的时间内速度变为恒定,说明油滴受到的作用,这个力的大小与速度成正比,可表示为kv(式中k为常量)而方向与.设油滴质量为m,电量为q,写出这两种情况下的方程式①;②.下面的表是通过这样的实验所测得的不同油滴所带电量q值的一个实例:q的测定值(单位:10-19C)6.418.019.6511.2311.8314.48分析这些数据可知:(答案.空气阻力速度方向相反①mg-kv1=0②mg-kv2-qE=0小球的电量是1.6×10-19C的整数倍,故电荷的最小电量为1.6×10-19C)13.用长度相同,横截面积之比为2∶1的均匀铜导线制成的两个正方形线框M和N,使它们从同一高度自由下落,途中经过一个有边界的匀强磁场区域,磁场方向垂直纸面向里,如图41-1所示.若下落过程中线框平面始终与磁场方向保持垂直,不计空气阻力,则M、N底边进入磁场瞬间的速度vM∶vN=,加速度aM∶aN=,在穿过磁场的过程中,线框M、N内产生的热量QM∶QN=.(答案:1:1,1:1,2:1)14.现有一电阻箱,一个开关,若干根导线和一个电流表,该电流表表面上有刻度但无刻度值,要求设计一个能测定某电源内阻的实验方案(已知电流表内阻可忽略,电流表量程符合要求,电源内阻约为几欧).要求:①画出实验电路图;②简要写出完成接线后的实验步骤;③写出用测得的量计算电源内阻的表达式r=.答案:(1)图略(2)①使电阻箱阻值最大,合上开关S,调节电阻箱阻值为R1,记下电流表对应的刻度N1;②调节电阻箱阻值为R2,记下电流表对应的刻度N2;③计算出r的值