高三专题圆周运动平抛天体学生版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1专题五圆周运动和平抛一、描述圆周运动的物理量1.线速度:做匀速圆周运动的物体所通过的弧长与所用的时间的比值。(1)物理意义:描述质点沿切线方向运动的快慢.(2)方向:某点线速度方向沿圆弧该点切线方向.(3)大小:V=S/t说明:线速度是物体做圆周运动的即时速度2.角速度:做匀速圆周运动的物体,连接物体与圆心的半径转过的圆心角与所用的时间的比值。(l)物理意义:描述质点绕圆心转动的快慢.(2)大小:ω=φ/t(rad/s)3.周期T,频率f:做圆周运动物体一周所用的时间叫周期.做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速.4.V、ω、T、f的关系T=1/f,ω=2π/T=2πf,v=2πr/T=2πrf=ωr.T、f、ω三个量中任一个确定,其余两个也就确定了.但v还和半径r有关.5.向心加速度(1)物理意义:描述线速度方向改变的快慢(2)大小:a=v2/r=ω2r=4π2fr=4π2r/T2=ωv,(3)方向:总是指向圆心,方向时刻在变化.不论a的大小是否变化,a都是个变加速度.(4)注意:a与r是成正比还是反比,要看前提条件,若ω相同,a与r成正比;若v相同,a与r成反比;若是r相同,a与ω2成正比,与v2也成正比.6.向心力(1)作用:产生向心加速度,只改变线速度的方向,不改变速度的大小.因此,向心力对做圆周运动的物体不做功.(2)大小:F=ma=mv2/r=mω2r=m4π2fr=m4π2r/T2=mωv(3)方向:总是沿半径指向圆心,时刻在变化.即向心力是个变力.说明:向心力是按效果命名的力,不是某种性质的力,因此,向心力可以由某一个力提供,也可以由几个力的合力提供,要根据物体受力的实际情况判定.二、匀速圆周运动1.特点:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的.2.性质:是速度大小不变而速度方向时刻在变的变速曲线运动,并且是加速度大小不变、方向时刻变化的变加速曲线运动.3.加速度和向心力:由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向心加速度,因此向心力就是做匀速圆周运动的物体所受外力的合力.4.质点做匀速圆周运动的条件:合外力大小不变,方向始终与速度方向垂直且指向圆心.三、变速圆周运动(非匀速圆周运动)变速圆周运动的物体,不仅线速度大小、方向时刻在改变,而且加速度的大小、方向也时刻在改变,是变加速曲线运动(注:匀速圆周运动也是变加速运动).变速圆周运动的合力一般不指向圆心,变速圆周运动所受的合外力产生两个效果.1.半径方向的分力:产生向心加速度而改变速度方向.2.切线方向的分力:产生切线方向加速度而改变速度大小.2故利用公式求圆周上某一点的向心力和向心加速度的大小,必须用该点的瞬时速度值.四、圆周运动解题思路1.灵活、正确地运用公式ΣFn=man=mv2/r=mω2r=m4π2r/T2=m4π2fr;2.正确地分析物体的受力情况,找出向心力.规律方法1.线速度、角速度、向心加速度大小的比较在分析传动装置的各物理量时.要抓住不等量和相等量的关系.同轴的各点角速度ω和n相等,而线速度v=ωr与半径r成正比.在不考虑皮带打滑的情况下.传动皮带与皮带连接的两轮边缘的各点线速度大小相等,而角速度ω=v/r与半径r成反比.【例1】对如图所示的皮带传动装置,下列说法中正确的是(A)A轮带动B轮沿逆时针方向旋转.(B)B轮带动A轮沿逆时针方向旋转.(C)C轮带动D轮沿顺时针方向旋转.(D)D轮带动C轮沿顺时针方向旋转.【例2】如图所示,皮带传动装置转动后,皮带不打滑,则皮带轮上A、B、C三点的情况是()A.vA=vB,vB>vC;B.ωA=ωB,vB=vCC.vA=vB,ωB=ωc;D.ωA>ωB,vB=vC【例3】如图所示,直径为d的纸质圆筒,以角速度ω绕轴O高速运动,有一颗子弹沿直径穿过圆筒,若子弹穿过圆筒时间小于半个周期,在筒上先、后留下a、b两个弹孔,已知ao、bo间夹角为φ弧度,则子弹速度为2.向心力的认识和来源(1)向心力不是和重力、弹力、摩擦力相并列的一种类型的力,是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切不可在物体的相互作用力(重力、弹力、摩擦力、万有引力)以外再添加一个向心力.(2)由于匀速圆周运动仅是速度方向变化而速度大小不变的运动,故只存在向心加速度,物体受的外力的合力就是向心力。显然物体做匀速圆周运动的条件是:物体的合外力大小不变,方向始终与速度方向垂直且指向圆心。(3)分析向心力来源的步骤是:首先确定研究对象运动的轨道平面和圆心的位置,然后分析圆周运动物体所受的力,作出受力图,最后找出这些力指向圆心方向的合外力就是向心力.例如,沿半球形碗的光滑内表面,一小球在水平面上做匀速圆周运动,如图小球做圆周运动的圆心在与小球同一水平面上的O/点,不在球心O,也不在弹力N所指的PO线上.这种分析方法和结论同样适用于圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。(4)变速圆周运动向心力的来源:分析向心力来源的步骤同分析匀速圆周运动向心力来源的步骤相向.但要注意,①一般情况下,变速圆周运动的向心力是合外为沿半径方向的分力提供.②分析竖直面上变速圆周运动的向心力的来源时,通常有细绳和杆两种模型.(5)当物体所受的合外力小于所需要提供的向心力时,即F向<2vmr时,物体做离心运动;当物体所受的合外力大于所需要的向心力,即F向>2vmr时,物体做向心运动。3【例4】飞行员从俯冲状态往上拉时,会发生黑机,第一次是因为血压降低,导致视网膜缺血,第二次是因为大脑缺血,问(1)血压为什么会降低?(2)血液在人体循环中。作用是什么?(3)为了使飞行这种情况,要在如图的仪器飞行员进行训练,飞行员坐在一个垂直平面做匀速圆周运动的舱内,要使飞行员受的加速度a=6g,则转速需为多少?(R=20m)。3、圆周运动与其它运动的结合圆周运动和其他运动相结合,要注意寻找这两种运动的结合点:如位移关系、速度关系、时间关系等.还要注意圆周运动的特点:如具有一定的周期性等.【例5】如图所示,M,N是两个共轴圆筒的横截面,外筒半径为R,内筒半径比R小很多,可以忽略不计。简的两端是封闭的,两筒之间抽成真空,两筒以相同角速度。转其中心轴线(图中垂直于纸面)作匀速转动,设从M筒内部可以通过窄缝S(与M筒的轴线平行)不断地向外射出两种不同速率v1和v2的微粒,从S处射出时初速度方向都是沿筒的半径方向,微粒到达N筒后就附着在N筒上,如果R、v1和v2都不变,而ω取某一合适的值,则()A.有可能使微粒落在N筒上的位置都在c处一条与S缝平行的窄条上B.有可能使微粒落在N筒上的位置都在某一处如b处一条与S缝平行的窄条上C.有可能使微粒落在N筒上的位置分别在某两处如b处和C处与S缝平行的窄条上D.只要时间足够长,N筒上将到处落有微粒【例6】如图所示,穿过光滑水平平面中央小孔O的细线与平面上质量为m的小球P相连,手拉细线的另一端,让小球在水平面内以角速度ω1沿半径为a的圆周做匀速圆周运动。所有摩擦均不考虑。求:(1)这时细线上的张力多大?(2)若突然松开手中的细线,经时间Δt再握紧细线,随后小球沿半径为b的圆周做匀速圆周运动。试问:Δt等于多大?这时的角速度ω2为多大?4、圆周运动中实例分析【例7】如图所示,是双人花样滑冰运动中男运动员拉着女运动员做圆锥摆运动的精彩场面.若女运动员做圆锥摆运动时和竖直方向的夹角为B,女运动员的质量为m,转动过程中女运动员的重心做匀速圆周运动的半径为r,求这时男运动员对女运动员的拉力大小及两人转动的角速度abOvV24【例8】如图所示为一实验小车中利用光脉冲测量车速和行程的装置的示意图,A为光源,B为电接收器,A、B均固定在车身上,C为小车的车轮,D为与C同轴相连的齿轮.车轮转动时,A发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信号,被B接收并转换成电信号,由电子电路记录和显示.若实验显示单位时间内的脉冲数为n,累计脉冲数为N,则要测出小车的速度和行程还必须测量的物理量或数据是;车速度的表达式为v=;行程的表达式为s=【例9】若近似认为月球绕地公转与地球绕日公转的轨道在同一平面内,且均为正圆,又知这两种转动同向,如图所示,月相变化的周期为29.5天(图示是相继两次满月时,月、地、日相对位置的示意图)。求:月球绕地球转一周所用的时间T(因月球总是一面朝向地球,故T恰是月球自转周期)。(提示:可借鉴恒星日、太阳日的解释方法)。【例10】如图所示,在圆柱形房屋天花板中心O点悬挂一根长为L的细绳,绳的下端挂一个质量为m的小球,已知绳能承受的最大拉力为2mg,小球在水平面内做圆周运动,当速度逐渐增大到绳断裂后,小球恰好以速度v2=gL7落到墙脚边.求(1)绳断裂瞬间的速度v1;(2)圆柱形房屋的高度H和半径.圆周运动的应用基础知识一、圆周运动的临界问题1.圆周运动中的临界问题的分析方法首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值.2.特例(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:注意:绳对小球只能产生沿绳收缩方向的拉力①临界条件:绳子或轨道对小球没有力的作用:mg=mv2/R→v临界=Rg(可理解为恰好转过或恰好转不过的速度)注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力作为向心力,此时临界速度V临≠Rg②能过最高点的条件:v≥Rg,当V>Rg时,绳对球产生拉力,轨道对球产生压力.③不能过最高点的条件:V<V临界(实际上球还没到最高点时就脱离了轨道)(2)如图(a)的球过最高点时,轻质杆(管)对球产生的弹力情况:注意:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.5①当v=0时,N=mg(N为支持力)②当0<v<Rg时,N随v增大而减小,且mg>N>0,N为支持力.③当v=Rg时,N=0①当v>Rg时,N为拉力,N随v的增大而增大(此时N为拉力,方向指向圆心)注意:管壁支撑情况与杆子一样若是图(b)的小球,此时将脱离轨道做平抛运动.因为轨道对小球不能产生拉力.注意:如果小球带电,且空间存在电场或磁场时,临界条件应是小球所受重力、电场力和洛仑兹力的合力等于向心力,此时临界速度gRV0。要具体问题具体分析,但分析方法是相同的。二.“质点做匀速圆周运动”与“物体绕固定轴做匀速转动”的区别与联系(1)质点做匀速圆周运动是在外力作用下的运动,所以质点在做变速运动,处于非平衡状态。(2)物体绕固定轴做匀速转动是指物体处于力矩平衡的转动状态。对于物体上不在转动轴上的任意微小质量团(可说成质点),则均在做匀速圆周运动。规律方法1.圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程【例1】在图中,一粗糙水平圆盘可绕过中心轴OO/旋转,现将轻质弹簧的一端固定在圆盘中心,另一端系住一个质量为m的物块A,设弹簧劲度系数为k,弹簧原长为L。将物块置于离圆心R处,R>L,圆盘不动,物块保持静止。现使圆盘从静止开始转动,并使转速ω逐渐增大,物块A相对圆盘始终未惰动。当ω增大到54kRlmR时,物块A是否受到圆盘的静摩擦力,如果受到静摩擦力,试确定其方向。【例2】如图所示,游乐列车由许多节车厢组成。列车全长为L,圆形轨道半径为R,(R远大于一节车厢的高度h和长度l,但L2πR).已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动而不能脱轨。试问:列车在水平轨道上应具有多大初速度V0,才能使列车通过圆形轨道?V0ROO/R6【例3】如图所示,细绳长为L,一端固定在O点,另一端系一质量为m、电荷量为+q的小球,置于电场强度为E的匀强电场中,欲使小球在竖直平面内做圆周运动,小球至最高点时速度应该是多大?【

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功