高中数学(4.2.3直线与圆的方程的应用)示范教案新人教A版必修2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

14.2.3直线与圆的方程的应用整体设计教学分析直线与圆的方程在生产、生活实践以及数学中有着广泛的应用.本小节设置了一些例题,分别说明直线与圆的方程在实际生活中的应用,以及用坐标法研究几何问题的基本思想及其解题过程.三维目标(1)理解直线与圆的位置关系的几何性质;(2)利用平面直角坐标系解决直线与圆的位置关系;用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.(3)会用“数形结合”的数学思想解决问题.让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分析问题与解决问题的能力.重点难点教学重点:求圆的应用性问题.教学难点:直线与圆的方程的应用.课时安排1课时教学过程导入新课思路1.如图1,某城市中的高空观览车的高度是100m,图1在离观览车约150m处有一建筑物,某人在离建筑物100m的地方刚好可以看到观览车,你根据上述数据,如何求出该建筑物的高度?要解决这个问题,我们继续研究直线与圆的方程的应用,教师板书课题:直线与圆的方程的应用.思路2.同学们,前面我们学习了圆的方程、直线与圆的位置关系、圆和圆的位置关系,那么如何利用这些关系来解决一些问题,怎样解决?带着这些问题我们学习直线与圆的方程的应用.教师板书课题:直线与圆的方程的应用.推进新课新知探究提出问题①你能说出直线与圆的位置关系吗?②解决直线与圆的位置关系,你将采用什么方法?③阅读并思考教科书上的例4,你将选择什么方法解决例4的问题?④你能分析一下确定一个圆的方程的要点吗?⑤你能利用“坐标法”解决例5吗?活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.教师引导学生考虑解决问题的思路,要全面考虑,发散思维.①学生回顾学习的直线2与圆的位置关系的种类;②解决直线与圆的位置关系,可以采取两种方法;③首先考虑问题的实际意义,如果本题出在初中,我们没有考虑的余地,只有几何法,在这里当然可以考虑用坐标法,两种方法比较可知哪个简单;④回顾圆的定义可知确定一个圆的方程的条件;⑤利用“坐标法”解决问题的关键是建立适当的坐标系,再利用代数与几何元素的相互转化得到结论.讨论结果:①直线与圆的位置关系有三类:相交、相切、相离.②解决直线与圆的位置关系,将采用代数和几何两种方法,多数情况下采用圆心到直线的距离与半径的关系来解决.③阅读并思考教科书上的例4,先用代数方法及坐标法,再用几何法,作一比较.④你能分析一下确定一个圆的方程的要点,圆心坐标和半径,有时关于D、E、F的三个独立的条件也可.⑤建立适当的坐标系,具体解法我们在例题中展开.应用示例思路1例1讲解课本4.2节例4,解法一见课本.图2解法二:如图2,过P2作P2H⊥OP.由已知,|OP|=4,|OA|=10.在Rt△AOC中,有|CA|2=|CO|2+|OA|2设拱圆所在的圆的半径为r,则有r2=(r-4)2+102.解得r=14.5.在Rt△CP2H中,有|CP2|2=|CH|2+|P2H|2.因为|P2H|=|OA2|=2,于是有|CH|2=r2-|OA2|2=14.52-4=206.25.又|OC|=14.5-4=10.5,于是有|OH|=|CH|-|CO|=25.206-10.5≈14.36-10.5=3.86.所以支柱A2P2的长度约为3.86cm.点评:通过课本解法我们总结利用坐标法解决几何问题的步骤是:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.把两种解法比较可以看出坐标法通俗易懂,几何法较难想,繁琐,因此解题时要有所选择.变式训练已知圆内接四边形的对角线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半.图33解:如图3,以四边形ABCD互相垂直的对角线CA、DB所在直线分别为x轴、y轴,建立适当的平面直角坐标系,设A(a,0),B(0,b),C(c,0),D(0,d).过四边形ABCD的外接圆的圆心O1分别作AC、BD、AD的垂线,垂足分别为M、N、E,则M、N、E分别为线段AC、BD、AD的中点,由线段的中点坐标公式,得1Ox=xm=2ca,1Oy=yn=2db,xE=2a,yE=2d.所以|O1E|=222221)222()222(cbddbaca.又|BC|=22cb,所以|O1E|=21|BC|.点评:用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素、点、直线、圆.将几何问题转化为代数问题,然后通过代数运算解决代数问题,最后解释代数运算结果的几何意义,得到几何问题的结论.例2有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后回运的运费是:每单位距离A地的运费是B地运费的3倍,已知A、B两地相距10km,居民选择A或B地购买这种商品的标准是:包括运费和价格的总费用较低.求A、B两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.活动:学生先审题,然后思考或讨论,学生有困难教师可以提示引导,建立适当的坐标系,这里以AB所在直线为x轴,线段AB的中点为原点建立直角坐标系较简单,假设一点距A地近,且费用低,列方程或不等式.解:以AB所在直线为x轴,线段AB的中点为原点建立直角坐标系,则A(-5,0),B(5,0).设某地P的坐标为(x,y),且P地居民选择A地购买商品的费用较低,并设A地的运费为3a元/km,则B地运费为a元/km.由于P地居民购买商品的总费用满足条件:价格+A地运费≤价格+B地运费,即3a22)5(yx≤a22)5(yx,整理得(x+425)2+y2≤(415)2.所以以点C(-425,0)为圆心,415为半径的圆就是两地居民购货的分界线.圆内的居民从A地购货费用较低,圆外的居民从B地购货费用较低,圆上的居民从A、B两地购货的总费用相等,因此可以随意从A、B两地之一购货.点评:在学习中要注意联系实际,重视数学在生产、生活和相关学科中的应用,解决有关实际问题时,关键要明确题意,掌握建立数学模型的基本方法.思路2例1求通过直线2x-y+3=0与圆x2+y2+2x-4y+1=0的交点,且面积最小的圆的方程.活动:学生思考或交流,教师提示引导,求圆的方程无非有两种方法:代数法和几何法.解法一:利用过两曲线交点的曲线系,设圆的方程为x2+y2+2x-4y+1+λ(2x-y+3)=0,配方得标准式(x+1+λ)2+(y-2-2)2=(1+λ)2+(2+2)2-3λ-1,∵r2=45λ2+λ+4=45(λ+52)2+519,∴当λ=-52时,半径r=519最小.4∴所求面积最小的圆的方程为5x2+5y2+6x-18y-1=0.解法二:利用平面几何知识,以直线与圆的交点A(x1,y1),B(x2,y2)连线为直径的圆符合要求.由,0142,03222yxyxyx消去y,得5x2+6x-2=0.∴判别式Δ>0,AB中点横坐标x0=221xx=-53,纵坐标y0=2x0+3=59,即圆心O′(-53,59).又半径r=21|x1-x2|·221=519,∴所求面积最小的圆的方程是(x+53)2+(y-59)2=519.点评:要熟练地进行圆的一般式与标准式之间的互化,这里配方法十分重要,方法二用到求弦长的公式|AB|=|x1-x2|·21k;对于圆的弦长,还可以利用勾股定理求得,即|AB|=22dr,其中r为圆半径,d为圆心到弦的距离.变式训练设圆满足①截y轴所得弦长为2,②被x轴分成两段弧,弧长之比为3∶1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.图4解:关键确定圆心坐标和半径.如图4.设圆心A(a,b),则半径r=2|b|.由截y轴的弦长为2,知a2+1=r2=2b2,又圆心A到l的距离d=51|a-2b|,∴5d2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=2b2-a2=1,当且仅当a=b时等号成立.这里由,2,1,2222rbraba解得.2,1,12,1,1rbarba或∴圆的方程为(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2.例2已知x,y是实数,且x2+y2-4x-6y+12=0,求(1)xy的最值;(2)x2+y2的最值;(3)x+y的最5值;(4)x-y的最值.活动:学生思考或交流,教师引导,数形结合,将代数式或方程赋予几何意义.解:(x-2)2+(y-3)2=1表示以点C(2,3)为圆心,1为半径的圆.(1)xy表示圆C上的点P(x,y)与坐标原点O(0,0)连线的斜率k,故当y=kx为圆C的切线时,k得最值.∵21|32|kk=1,∴k=2±323.∴xy的最大值为2+323,最小值为2-323.(2)设x2+y2表示圆C上的点P(x,y)与坐标原点O(0,0)连结的线段长的平方,故由平面几何知识,知当P为直线OC与圆C的两交点P1、P2时,OP12与OP22分别为OP2的最大值、最小值.∴x2+y2的最大值为(2232+1)2=14+213,最小值为(2232-1)2=14-213.(3)令x+y=m,当直线l:x+y=m与圆C相切时,l在y轴上截距m取得最值.∵2|32|m=1,∴m=5±2.∴x+y的最大值为5+2,最小值为5-2.(4)令x-y=n,当直线l′:x-y=n与圆C相切时,l′在y轴上截距的相反数n取得最值.∵2|32|n=1,∴n=-1±2.∴x-y的最大值为-1+2,最小值为-1-2.点评:从“数”中认识“形”,从“形”中认识“数”,数形结合相互转化是数学思维的基本方法之一.“数学是一个有机的统一体,它的生命力的一个必要条件是所有的各个部分不可分离地结合.”(希尔伯特)数形结合的思维能力不仅是中学生的数学能力、数学素养的主要标志之一,而且也是学习高等数学和现代数学的基本能力.本题是利用直线和圆的知识求最值的典型题目.例3已知圆O的方程为x2+y2=9,求过点A(1,2)所作的弦的中点的轨迹.活动:学生回想求轨迹方程的方法与步骤,思考讨论,教师适时点拨提示,本题可利用平面几何的知识.解法一:参数法(常规方法)设过A的弦所在的直线方程为y-2=k(x-1)(k存在时),P(x,y),则),2(,922kkxyyx消y,得(1+k2)x2+2k(2-k)x+k2-4k-5=0.6∴x1+x2=1)2(22kkk.利用中点坐标公式及中点在直线上,得12,1)2(22kkykkkx(k为参数).∴消去k得P点的轨迹方程为x2+y2-x-2y=0,当k不存在时,中点P(1,0)的坐标也适合方程.∴P的轨迹是以点(21,1)为圆心,25为半径的圆.解法二:代点法(涉及中点问题可考虑此法)设过点A的弦MN,M(x1,y1),N(x2,y2).∵M、N在圆O上,∴.9,922222121yxyx.∴相减得(x1+x2)+2121xxyy·(y1+y2)=0(x1≠x2).设P(x,y),则x=221xx,y=221yy.∴M、N、P、A四点共线,2121xxyy=12xy(x≠1).∴2x+12xy·2y=0.∴中点P的轨迹方程是x2+y2-x-2y=0(x=1时亦正确).∴点P的轨迹是以点(21,1)为圆心,25为半径的圆.解法三:数形结合(利用平面几何知识)由垂径定理知OP⊥PA,故P点的轨迹是以AO为直径的圆.(下略)点评:本题涉及求轨迹方程的三种间接方法.思路一,代表了解析几何的基本思路和基本方法,即,0),(,0),(yxgyxf消y(或x)得关于x(或y)的一元二次方程Ax

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功