金太阳新课标资源网wx.jtyjy.com第1页共4页金太阳新课标资源网wx.jtyjy.com建立数学模型第八课时导数的实际应用(二)一、教学目标:1、使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用;2、提高将实际问题转化为数学问题的能力。二、教学重点:利用导数解决生活中的一些优化问题.教学难点:利用导数解决生活中的一些优化问题.三、教学方法:探究归纳,讲练结合四、教学过程:(一).创设情景生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.(二).新课探究导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.利用导数解决优化问题的基本思路:(三).典例分析例1、海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小?解:设版心的高为xdm,则版心的宽为128xdm,此时四周空白面积为128512()(4)(2)12828,0Sxxxxxx。求导数,得'2512()2Sxx。解决数学模型作答用函数表示的数学问题优化问题用导数解决数学问题优化问题的答案金太阳新课标资源网wx.jtyjy.com第2页共4页金太阳新课标资源网wx.jtyjy.com令'2512()20Sxx,解得16(16xx舍去)。于是宽为128128816x。当(0,16)x时,'()Sx0;当(16,)x时,'()Sx0.因此,16x是函数()Sx的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。例2、饮料瓶大小对饮料公司利润的影响(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?(2)是不是饮料瓶越大,饮料公司的利润越大?【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是20.8r分,其中r是瓶子的半径,单位是厘米。已知每出售1mL的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6cm问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?(2)瓶子的半径多大时,每瓶的利润最小?解:由于瓶子的半径为r,所以每瓶饮料的利润是332240.20.80.8,0633ryfrrrrr令20.8(2)0frrr解得2r(0r舍去)当0,2r时,0fr;当2,6r时,0fr.当半径2r时,0fr它表示fr单调递增,即半径越大,利润越高;当半径2r时,0fr它表示fr单调递减,即半径越大,利润越低.(1)半径为2cm时,利润最小,这时20f,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.(2)半径为6cm时,利润最大.换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?有图像知:当3r时,30f,即瓶子的半径为3cm时,饮料的利润与饮料瓶的成本恰好相等;当3r时,利润才为正值.金太阳新课标资源网wx.jtyjy.com第3页共4页金太阳新课标资源网wx.jtyjy.com建立数学模型当0,2r时,0fr,fr为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为2cm时,利润最小.(四).课堂练习1.用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作的容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.(高为1.2m,最大容积31.8m)2.课本P65练习题(五).回顾总结:1.利用导数解决优化问题的基本思路:2.解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具。(六).布置作业:1、一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b.解:由梯形面积公式,得S=21(AD+BC)h,其中AD=2DE+BC,DE=33h,BC=b∴AD=332h+b,∴S=hbhhbh)33()2332(21①∵CD=hh3230cos,AB=CD.∴l=h32×2+b②由①得b=33hSh,代入②,∴l=hShhhSh333334l′=23hS=0,∴h=43S,当h43S时,l′0,h43S时,l′0.∴h=43S时,l取最小值,此时b=S33242、已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,求这种矩形中面积最大者的边长.【解】设位于抛物线上的矩形的一个顶点为(x,y),且x>0,y>0,解决数学模型作答用函数表示的数学问题优化问题用导数解决数学问题优化问题的答案金太阳新课标资源网wx.jtyjy.com第4页共4页金太阳新课标资源网wx.jtyjy.com则另一个在抛物线上的顶点为(-x,y),在x轴上的两个顶点为(-x,0)、(x,0),其中0<x<2.设矩形的面积为S,则S=2x(4-x2),0<x<2.由S′(x)=8-6x2=0,得x=332,易知x=34是S在(0,2)上的极值点,即是最大值点,所以这种矩形中面积最大者的边长为332和38.【点评】应用题求解,要正确写出目标函数并明确题意所给的变量制约条件.应用题的分析中如确定有最小值,且极小值唯一,即可确定极小值就是最小值.五、教后反思: