1广宇学校高二数学主体性课堂教学案主备人贾卫卫主导教师章第2课时总第26课时备课日期2012-10-15课题1.1命题及其关系(二)充分条件与必要条件课型新授教学目标:使学生正确理解充分条件、必要条件和充要条件三个概念,并能在判断、论证中正确运用.在师生、学生间的交流中增强逻辑思维活动,为用等价转化思想解决数学问题打下良好的逻辑基础.教学重点:充分不必要条件、必要不充分条件的概念;教学难点:判断命题的充分不必要条件、必要不充分条件;课型:新授课教学手段:多媒体教学过程学生活动一、创设情境当某一天你和你的妈妈在街上遇到老师的时候,你向老师介绍你的妈妈说:“这是我的妈妈”.那么,大家想一想这个时候你的妈妈还会不会补充说:“你是她的孩子”呢?不会了!为什么呢?因为前面你所介绍的她是你的妈妈就足于保证你是她的孩子.那么,这在数学中是一层什么样的关系呢?今天我们就来学习这个有意义的课题—充分条件与必要条件.问题1:前面讨论了“若p则q”形式的命题的真假判断,请同学们判断下列命题的真假,并说明条件和结论有什么关系?(1)若x=y,则x2=y2(2)若ab=0,则a=0(3)若x21,则x1(4)若x=1或x=2,则x2-3x+2=0推断符号“”的含义“若p则q”为真,是指由p经过推理可以得出q,也就是说,如果p成立,那么q一定成立,记作pq,或者qp;如果由p推不出q,命题为假,记作pq.简单地说,“若p则q”为真,记作pq(或qp);“若p则q”为假,记作pq(或qp).问题1的分析:命题(1)、(4)为真,是由p经过推理可以得出q,即如果p成立,那么q一定成立,此时可记作“pq”,命题(2)、(3)为假,是由p经过推理得不出q,即如果p成立,推不出q成立,此时可记作“pq.”说明:“pq”表示“若p则q”为真,可以解释为:如果具备了条件p,就是以保证q成立,即表示“p蕴含q”。二、引入新课充分条件、必要条件一般地,如果已知pq,那么就说:p是q的充分条件;q是p的必要条件;如果已知pq,且qp,那么就说:p是q的充分且必要条件,简记充要条件;如果已知pq,那么就说:p不是q的充分条件;q不是p的必要条件;通过问题复习巩固.回答上述命题(1)(2)(3)(4)中的条件关系.2教师点拨:命题(1)中因x=yx2=y2,所以“x=y”是“x2=y2”的充分条件,“x2=y2”是“x=y”的必要条件;x2=y2x=y,所以“x2=y2”不是“x=y”的充分条件,“x=y”不是“x2=y2”的必要条件;命题(2)中因a=0ab=0,,所以“a=0”是“ab=0”的充分条件.“ab=0”是“a=0”的必要条件.ab=0a=0,所以“ab=0”不是“a=0”的充分条件,“a=0”不是“ab=02”的必要条件;命题(3)中,因“x1x21”,所以“x1”是x21的充分条件,“x21”是“x1”的必要条件.x21x1,所以“x21”不是“x1”的充分条件,“x1”不是“x21”的必要条件.命题4)中,因x=1或x=2x2-3x+2=0,所以“x=1或x=2”是“x2-3x+2=0”的充要分条件.由上述命题的充分条件、必要条件的判断过程,可确定命题按条件和结论的充分性、必要性可分为四类:(1)充分不必要条件,即pq,而qp.(2)必要不充分条件,即:pq,而qp.(3)既充分又必要条件,即pq,又有qp.(4)既不充分又不必要条件,即pq,又有qp.三、例题讲解:例1指出下列各组命题中,p是q的什么条件,q是p的什么条件:(1)p:x-1=0;q:(x-1)(x+2)=0.(2)p:两条直线平行;q:内错角相等.(3)p:ab;q:a2b2(4)p:四边形的四条边相等;q:四边形是正四边形.分析:可根据“若p则q”与“若q则p”的真假进行判断.解:⑴由pq,即x-1=0(x-1)(x+2)=0,知p是q的充分条件,q是p的必要条件.⑵由pq,即两条直线平行内错角相等,知p是q的充要条件,q是p的充要条件;⑶由pq,即aba2b2,知p不是q的充分条件,q不是p的必要条件;qp,即a2b2ab,知q不是p的充分条件,p不是q的必要条件.综述:p是q的既不充分条件又不必要条件。⑷由qp,即四边形是正四边形四边形的四条边相等,知q是p的充分条件,p是q的必要条件.由pq,即四边形的四条边相等四边形是正四边形,知p不是q的充分条件,q不是p的必要条件;综述:p是q的必要不充分条件。以上是直接利用定义由原命题判断充分条件与必要条件的方法.那么,如果由命题不是很好判断的话,我们可以换一种方式,根据互为逆否命题的等价性,利用它的逆否命题来进行判断.例2(补)如图1,有一个圆A,在其内又含有一个圆B.请回答:⑴命题:若“A为绿色”,则“B为绿色”中,“A为绿色”是“B为绿色”的什么条件;“B为绿色”又是“A为绿色”的什么条件.⑵命题:若“红点在B内”,则“红点一定在A内”中,“红点在B内”是“红点在A内”的什么条件;“红点在A内”又是“红点在B内”的什么条件.练习:用“充分”或“必要”填空,并说明理由:①“a和b都是偶数”是“a+b也是偶数”的条件;②“x>5”是“x>3”的条件;③“x3”是“|x|3”的条件;④““个位数字是5的自然数”是“这个自然数能被5整除”的条件;⑤“至少有一组对应边相等”是“两个三角形全等”的条件;⑥对于一元二次方程ax2+bx+c=0(其中a,b,c都不为0)来说,“b2-4ac0”是“这个方程有两个正根”的条件;3解法1(直接判断):⑴∵“A为绿色B为绿色”是真的,∴由定义知,“A为绿色”是“B为绿色”的充分条件;“B为绿色”是“A为绿色”的必要条件.⑵如图2⑴,∵“红点在B内红点在A内”是真的,∴由定义知,“红点在B内”是“红点在A内”的充分条件;“红点在A内”是“红点在B内”的必要条件.解法2(利用逆否命题判断):⑴它的逆否命题是:若“B不为绿色”则“A不为绿色”.∵“B不为绿色A不为绿色”为真,∴“A为绿色”是“B为绿色”的充分条件;“B为绿色”是“A为绿色”的必要条件.⑵它的逆否命题是:若“红点不在A内”,则“红点一定不在B内”.如图2⑵,∵“红点不在A内红点一定不在B内”为真,∴“红点在B内”是“红点在A内”的充分条件;“红点在A内”是“红点在B内”的必要条件.问题小结:充分条件与必要条件的判断:(1)直接利用定义判断:即“若pq成立,则p是q的充分条件,q是p的必要条件”.(条件与结论是相对的)(2)利用等价命题关系判断:“pq”的等价命题是“qp”。即“若┐q┐p成立,则p是q的充分条件,q是p的必要条件”。如何理解充分条件与必要条件中的“充分”和“必要”呢?下面我们以例2为例来说明.先说充分性:说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.例如,说“A为绿色”是“B为绿色”的一个充分条件,就是说“A为绿色”,它足以保证“B为绿色”.它符合上述的“若p则q”为真(即pq)的形式.再说必要性:必要就是必须,必不可少.从例2的图可以看出,如果“B为绿色”,A可能为绿色,A也可能不为绿色.但如果“B不为绿色”,那么“A不可能为绿色”.因此,必要条件简单说就是:有它不一定,没它可不行.它满足上述的“若非q则非p”为真(即┐q┐p)的形式.六、回顾反思本节主要学习了推断符号“”的意义,充分条件与必要条件的概念,以及判断充分条件与必要条件的方法.(1)若pq(或若┐q┐p),则p是q的充分条件;若qp(或若┐p┐q),则p是q的必要条件.(2)条件是相互的;(3)p是q的什么条件,有四种回答方式:①p是q的充分而不必要条件;②p是q的必要而不充分条件;③p是q的充要条件;④p是q的既不充分也不必要条件。巩固练习:1.已知真命题“a≥bc>d”和“a<be≤f”,则“c≤d”是“e≤f”的________条件.2.44是22的什么条件?并说明理由.3.已知p∶x2-8x-20>0,q∶x2-2x+1-a2>0。若p是q的充分而不必要条件,求正实数a的取值范围.4.xy,0xy是11xy的充分条件,还是必要条件?充要条件?4八、参考答案:1.①充分②充分③充分④充分⑤必要⑥必要2.A3.充分4.解:2244但反之却不一定成立。例如取α=1,β=5,显然满足44但不满足22所以44是22的必要但不充分条件.5.解:p∶A={x|x<-2,或x>10},q∶B={x|x<1-a,或x>1+a,a>0}如图,依题意,pq,但q不能推出p,说明AB,则有.101,21,0aaa解得0<a≤3.6.充分不必要条件