一题多解、一题多变一题多解-1.已知212xxf-)(=(-1)x,求-12()3f-的值解法1先求反函数由221xy-得221yx--1x∴y2-1-=x且0y故原函数的反函数是x2-1-)(1-=xf)(0x∴-2)32-(1-=f解法2从互为反函数的函数的关系看令32-x-2=12解得2±=x-1x∴-2=x即-2)32-(1-=f变题2.已知)(xf对于任意实数yx.满足)()()(yfxfyxf+=+,当0x时,0)(xf(1)求证)-(-)(xfxf=(2)判断)(xf的单调性证明(1)令,0==yx得)()()(000fff+=∴00=)(f-令-y=x,得0-x)()()(=+=fxff0∴)-(-)(xfxf=(2)设21xx,则)()-()()]-([)(11211212xfxxfxfxxxfxf+=+=∴)(xf在R上是单调函数变题1.已知函数是定义R在上的增函数,且满足-)()(xfyxf=)(yf(1)求)(1f的值(2)若,)(16=f解不等式215+)(-)(xfxf解(1)令1==yx,得)(-)()(111fff=∴01=)(f-(3)在)(-)()(yfxfyxf=中,令61==yx,得1661-)(-)(==ff从而261636==)(-)()(fff又原不等式可化为)()]([365fxxf+,且)(xf是),(+∞0上的增函数,∴原不等式等价于365+)(xx∴49x-又0x05+x解得40x∴原不等式的解集为(0,4)