1高中数学复习专题讲座曲线的轨迹方程的求法高考要求求曲线的轨迹方程是解析几何的两个基本问题之一求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点重难点归纳求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求(3)相关点法根据相关点所满足的方程,通过转换而求动点的轨迹方程(4)参数法若动点的坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性要注意区别“轨迹”与“轨迹方程”是两个不同的概念典型题例示范讲解例1如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程命题意图本题主要考查利用“相关点代入法”求曲线的轨迹方程知识依托利用平面几何的基本知识和两点间的距离公式建立线段AB中点的轨迹方程错解分析欲求Q的轨迹方程,应先求R的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题技巧与方法对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程例2设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线命题意图本题主要考查“参数法”求曲线的轨迹方程知识依托直线与抛物线的位置关系错解分析当设A、B两点的坐标分别为(x1,y1),(x2,y2)时,注意对“x1=x2”的讨论技巧与方法将动点的坐标x、y用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x、y的关系NAMBoyxBQRAPoyx2例3某检验员通常用一个直径为2cm和一个直径为1cm的标准圆柱,检测一个直径为3cm的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力知识依托圆锥曲线的定义,求两曲线的交点错解分析正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键技巧与方法研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程例4已知A、B为两定点,动点M到A与到B的距离比为常数λ,求点M的轨迹方程,并注明轨迹是什么曲线巩固练习1已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()A圆B椭圆C双曲线的一支D抛物线2设A1、A2是椭圆4922yx=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为()A14922yxB14922xyC14922yxD14922xy3△ABC中,A为动点,B、C为定点,B(-2a,0),C(2a,0),且满足条件sinC-sinB=21sinA,则动点A的轨迹方程为_________4高为5m和3m的两根旗杆竖在水平地面上,且相距10m,如果把两旗杆底部的坐标分别确定为A(-5,0)、B(5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________5已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程QPBAoyxM(x,y)B(a,0)A(-a,0)oyxO'FEDCBA36双曲线2222byax=1的实轴为A1A2,点P是双曲线上的一个动点,引A1Q⊥A1P,A2Q⊥A2P,A1Q与A2Q的交点为Q,求Q点的轨迹方程7已知双曲线2222nymx=1(m>0,n>0)的顶点为A1、A2,与y轴平行的直线l交双曲线于点P、Q(1)求直线A1P与A2Q交点M的轨迹方程;(2)当m≠n时,求所得圆锥曲线的焦点坐标、准线方程和离心率8已知椭圆2222byax=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R(1)当P点在椭圆上运动时,求R形成的轨迹方程;(2)设点R形成的曲线为C,直线ly=k(x+2a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值MPQA2A1oyxRPQF2F1oyx4参考答案1解析∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆答案A2解析设交点P(x,y),A1(-3,0),A2(3,0),P1(x0,y0),P2(x0,-y0)∵A1、P1、P共线,∴300xyxxyy∵A2、P2、P共线,∴300xyxxyy解得x0=149,149,3,92220200yxyxxyyx即代入得答案C3解析由sinC-sinB=21sinA,得c-b=21a,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222axayax答案)4(1316162222axayax4解析设P(x,y),依题意有2222)5(3)5(5yxyx,化简得P点轨迹方程为4x2+4y2-85x+100=0答案4x2+4y2-85x+100=05解设过B、C异于l的两切线分别切⊙O′于D、E两点,两切线交于点P由切线的性质知|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由椭圆定义知,点P的轨迹是以B、C为两焦点的椭圆,以l所在的直线为x轴,以BC的中点为原点,建立坐标系,可求得动点P的轨迹方程为728122yx=1(y≠0)6解设P(x0,y0)(x≠±a),Q(x,y)∵A1(-a,0),A2(a,0)由条件yaxyaxxxaxyaxyaxyaxy220000000)(11得而点P(x0,y0)在双曲线上,∴b2x02-a2y02=a2b2即b2(-x2)-a2(yax22)2=a2b25化简得Q点的轨迹方程为a2x2-b2y2=a4(x≠±a)7解(1)设P点的坐标为(x1,y1),则Q点坐标为(x1,-y1),又有A1(-m,0),A2(m,0),则A1P的方程为y=)(11mxmxy①A2Q的方程为y=-)(11mxmxy②①×②得y2=-)(2222121mxmxy③又因点P在双曲线上,故).(,12212221221221mxmnynymx即代入③并整理得2222nymx=1此即为M的轨迹方程(2)当m≠n时,M的轨迹方程是椭圆(ⅰ)当m>n时,焦点坐标为(±22nm,0),准线方程为x=±222nmm,离心率e=mnm22;(ⅱ)当m<n时,焦点坐标为(0,±22nm),准线方程为y=±222mnn,离心率e=nmn228解(1)∵点F2关于l的对称点为Q,连接PQ,∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2|又因为l为∠F1PF2外角的平分线,故点F1、P、Q在同一直线上,设存在R(x0,y0),Q(x1,y1),F1(-c,0),F2(c,0)|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=2a,则(x1+c)2+y12=(2a)2又221010yycxx得x1=2x0-c,y1=2y0∴(2x0)2+(2y0)2=(2a)2,∴x02+y02=a2故R的轨迹方程为x2+y2=a2(y≠0)(2)如右图,∵S△AOB=21|OA|·|OB|·sinAOB=22asinAOB6当∠AOB=90°时,S△AOB最大值为21a2此时弦心距|OC|=21|2|kak在Rt△AOC中,∠AOC=45°,.33,2245cos1|2|||||2kkaakOAOCCBAoyx