对数的运算性质问题:是否成立?若)(logloglog,0,0,1,0MNNMNMaaaaa成立logloglogaaaMNMN证明由指数运算法则得:证明:,pqaMaN,则pqpqMNaaalog()aMNpq∴log()loglogaaaMNMN即:log,logaaMpNq设2(1)log(3264)331(2)log5log566(3)log2log3例1:计算新问题:log?(0,1,,0)aMaaMNNlogloglogaaaMMNN,pqaMaNppqqMaaNa由指数运算法则得:证明:则得:logloglogaaaMpqMNN∴log,logaaMpNq设10(1)lg100(2)lg20lg2例2:计算log?(0,1,0)naMaaM新问题:证明:,paM()ppnnnMaaloglognaaMnMlog,aMp设则loglognaaMnM巩固练习99(1)log3log275(2)lg1001(3)lg2lg542(4)log(44)lg100000(5)lg100752(6)log(42)1.计算的式子表示2.已知用22log3,log5ab,,ab2(1)log0.62(2)log30423(3)log125三、知识应用1logloglog(-),,,logaaaayxxyz例、用表示下列各式logaxyz(1)23(2)logaxyxzloglog()logaaaxyxyzz解:(1)logloglogaaaxyz2233(2)loglog()logaaaxyxxyxzz23logloglogaaayxzx112loglog()log23aaaxyxz2例、求下列各式的值2751log(42)()1324(2)lglg8lg245249322275751log(42)log4log2()227log45log2725119解:31222lg2lg(549)14()原式=(lg32-lg49)-2331lg2lg(549)225214(lg2-lg7)-23212lg2lg5lg725111lg2-2lg7-22212lg2lg5lg725lg2-lg7-21lg5lg102111lg2222知识探究(一):对数的换底公式思考2:你能用lg2和lg3表示log23吗?思考1:假设,则,从而有.进一步可得到什么结论?22log5log3x222log5log3log3xx35x思考4:我们把(a0,且a≠1;c0,且c≠1;b0)叫做对数换底公式,该公式有什么特征?logloglogcacbba思考3:一般地,如果a0,且a≠1;c0,且c≠1;b0,那么与哪个对数相等?如何证明这个结论?loglogccba思考6:换底公式在对数运算中有什么意义和作用?思考5:通过查表可得任何一个正数的常用对数,利用换底公式如何求的值?1.0118log13知识探究(二):换底公式的变式思考1:与有什么关系?logablogba思考2:与有什么关系?lognaNlogaN理论迁移例1计算:(1);(2)(log2125+log425+log85)·(log52+log254+log1258)32log9log278