高中数学解题思想方法七_反证法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

卓越个性化教案GFJW0901学生姓名年级高授课时间教师姓名水老师课时教学目标高中数学解题思想方法及其应用七:数学方法之反证法重点难点高中数学解题基本方法——反证法与前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的反面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。Ⅰ、再现性题组:1.已知函数f(x)在其定义域内是减函数,则方程f(x)=0______。A.至多一个实根B.至少一个实根C.一个实根D.无实根2.已知a0,-1b0,那么a、ab、ab2之间的大小关系是_____。A.aabab2B.ab2abaC.abaab2D.abab2a3.已知α∩β=l,aα,bβ,若a、b为异面直线,则_____。A.a、b都与l相交B.a、b中至少一条与l相交C.a、b中至多有一条与l相交D.a、b都与l相交4.四面体顶点和各棱的中点共10个,在其中取4个不共面的点,不同的取法有_____。(97年全国理)A.150种B.147种C.144种D.141种【简解】1小题:从结论入手,假设四个选择项逐一成立,导出其中三个与特例矛盾,选A;2小题:采用“特殊值法”,取a=-1、b=-0.5,选D;3小题:从逐一假设选择项成立着手分析,选B;4小题:分析清楚结论的几种情况,列式是:C104-C64×4-3-6,选D。卓越个性化教案GFJW0901Ⅱ、示范性题组:例1.如图,设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点。求证:AC与平面SOB不垂直。【分析】结论是“不垂直”,呈“否定性”,考虑使用反证法,即假设“垂直”后再导出矛盾后,再肯定“不垂直”。【证明】假设AC⊥平面SOB,∵直线SO在平面SOB内,∴AC⊥SO,∵SO⊥底面圆O,∴SO⊥AB,∴SO⊥平面SAB,∴平面SAB∥底面圆O,这显然出现矛盾,所以假设不成立。即AC与平面SOB不垂直。【注】否定性的问题常用反证法。例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾。例2.若下列方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根。试求实数a的取值范围。【分析】三个方程至少有一个方程有实根的反面情况仅有一种:三个方程均没有实根。先求出反面情况时a的范围,再所得范围的补集就是正面情况的答案。【解】设三个方程均无实根,则有:△△△12222221644301404420aaaaaa()()(),解得321211320aaaa或,即-32a-1。所以当a≥-1或a≤-32时,三个方程至少有一个方程有实根。【注】“至少”、“至多”问题经常从反面考虑,有可能使情况变得简单。本题还用到了“判别式法”、“补集法”(全集R),也可以从正面直接求解,即分别求出三个方程有实根时(△≥0)a的取值范围,再将三个范围并起来,即求集合的并集。两种解法,要求对不等式解集的交、并、补概念和运算理解透彻。例3.给定实数a,a≠0且a≠1,设函数y=xax11(其中x∈R且x≠1a),证明:①.经过这个函数图像上任意两个不同点的直线不平行于x轴;②.这个函数的图像关于直线y=x成轴对称图像。【分析】“不平行”的否定是“平行”,假设“平行”后得出矛盾从而推翻假设。【证明】①设M1(x1,y1)、M2(x2,y2)是函数图像上任意两个不同的点,则x1≠x2,假设直线M1M2平行于x轴,则必有y1=y2,即xax1111=xax2211,整理得a(x1-x2)=x1-x2∵x1≠x2∴a=1,这与已知“a≠1”矛盾,SCAOB卓越个性化教案GFJW0901因此假设不对,即直线M1M2不平行于x轴。②由y=xax11得axy-y=x-1,即(ay-1)x=y-1,所以x=yay11,即原函数y=xax11的反函数为y=xax11,图像一致。由互为反函数的两个图像关于直线y=x对称可以得到,函数y=xax11的图像关于直线y=x成轴对称图像。【注】对于“不平行”的否定性结论使用反证法,在假设“平行”的情况下,容易得到一些性质,经过正确无误的推理,导出与已知a≠1互相矛盾。第②问中,对称问题使用反函数对称性进行研究,方法比较巧妙,要求对反函数求法和性质运用熟练。Ⅲ、巩固性题组:1.已知f(x)=xx1||,求证:当x1≠x2时,f(x1)≠f(x2)。2.已知非零实数a、b、c成等差数列,a≠c,求证:1a、1b、1c不可能成等差数列。3.已知f(x)=x2+px+q,求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于12。4.求证:抛物线y=x22-1上不存在关于直线x+y=0对称的两点。5.已知a、b∈R,且|a|+|b|1,求证:方程x2+ax+b=0的两个根的绝对值均小于1。6.两个互相垂直的正方形如图所示,M、N在相应对角线上,且有EM=CN,求证:MN不可能垂直CF。AFDBMNEC

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功