1.流动边界层固体壁面附近流体,由于粘性导致速度急剧变化的薄层称为流动边界层(速度边界层)2.定性温度用以确定特征数中流体物性的温度称为定性温度。3.灰体光谱吸收比与波长无关的物体称为灰体。4.辐射力指单位时间、单位面积的辐射表面向半球空间所有方向所发射的全部波长的总能量。1.经过白天太阳底下晒过的棉被,晚上盖起来感到暖和,并且经过拍打以后,效果更加明显,试解释原因。(6分)答:棉被经过晾晒以后,可使棉花的空隙进入更多的空气,而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。而经过拍打的棉被可以让更多的空气进入,因而效果更明显。2.写出傅立叶导热定律表达式,并说明式中各量和符号的物理意义。(6分)答:ttngradqn其中q是热流密度矢量;是到导热系数,表示物质导热本领的大小;gradt是空间某点的温度梯度;n是通过该点的等温线上的法向单位矢量,指向温度升高的方向,负号表示热量沿温度降低的方向传递。3.写出努塞尔数Nu与毕渥数Bi表达式并比较异同。(6分)答:从形式上看,Nu数(hlNu)与Bi数(hlBi)完全相同,但二者的物理意义却不同。Nu数中为流体的导热系数,而一般h未知,因而Nu数一般是待定准则。Nu数的物理意义表示壁面附近流体的无量纲温度梯度,它表示流体对流换热的强弱。而Bi数中的为导热物体的导热系数,且一般情况下h已知,Bi数一般是已定准则。Bi数的物理意义是导热题内部导热热阻(l/)与外部对流热阻(1/h)的相对大小。4.厚度等于的常物性无限大平板,初始温度均匀为t0,过程开始后,左侧有一定热流密度qw的热源加热,右侧与低温流体tf相接触(t0tf),表面传热系数h等于常数,所有物性参数已知,写出该导热问题的数学描述。(6分)答:这是一个沿平板厚度方向的一维非稳态导热问题,其微分方程、边界及初始条件为微分方程:22ttcx初始条件:00,,0txt边界条件:00,xwxqtx,(,)xfxthxtt1.导热微分方程的一般形式为Vttttcxxyyzz,当热物性参数为常数时,上式可表示为222222Vttttcxyzc;对于常物性参数,无内热源的二维非稳态导热问题可表示为2222tttcxy;对于常物性参数,无内热源的一维稳态导热可表示为220dtdx。2.多层平壁热流密度计算公式为111nniiittq。3.供暖系统中暖气片内的热水通过对流方式把热量传到管子内壁,然后以.导热方式热量传到管子外壁,最后通过对流+热辐射方式,使室内环境温度升高。4.已知等截面直肋中沿肋高x过余温度分布θ与肋根部过余温度θ0之间关系为)()]([0mHchHxmch由此可得肋端部H过余温度为)(0mHch5.对流换热的种类按照流动的动力不同可分为强制对流和自然对流。6.二维稳态导热的有限差分方程1,1,,1,1,40mnmnmnmnmnttttt。1.用装有油的铁套和玻璃水银温度计测量蒸汽管道中的温度,温度计读数为100℃,套筒根部温度为60℃,套筒高度H=140mm,壁厚δ=1mm,铁套导热系数为λ=58.2W/m.K,铁套外表面与蒸汽间的换热系数为29.1(W/m2K),试分析温度计读数误差有多大?(10分)解:温度计读得的温度tH与压缩空气真实温度tf间的联系可表示为:)()]([0mHchHxmch当x=H时,)()()]([00mHchmHchHxmch于是00()()()1fHHffchchchtttmHttttmHmH周长U=πd,套管壁横截面Af=πdδ。所以29.10.143.1358.20.001fhUhmHHHA由附表查得ch(3.13)=11.5,10011.560103.811.51tf℃测试获得的温度和实际温度相差3.8℃。2一直径为10cm,长60cm的钢圆柱体,初始温度为30℃,将其放入炉温为1200℃的加热炉中加热,升温到800℃后方可取出,设圆柱体与炉内烟气之间的复合表面传热系数为110W/(m2.K),钢的物性参数分别为c=0.48kJ/(kg.K),ρ=7753(kg/m3),λ=58.2(W/m.K)需要多长时间?(10分)解:首先采用集总参数法判据0.05110(/)220.047358.20.10.050.1VVRhhVABiMBiM可以采用集总参数法。2320033110π0.10.62π0.051.3107753480π0.050.680012000.3419exp301200exp1.310ln0.3419825.6s1.310ffhAcVtthAttcV解:定性温度:tm=(170+30)/2℃=100℃查附录5得:m=3.21×10-2W/(m℃)m=23.13×10-6m2/sPrm=0.688空气的体胀系数av=1/T=1/373K-1由此计算出:33,1122129.8131401.85821037323.1310VmmgHtGrv按表6-1处于紊流流态,C=0.11,n=1/3Num=0.11(GrmPrm)1/3=0.11×(1.8582×1011×0.688)1/3=554.1422554.143.21105.93W/(mC)3mmNuhl45.933121402.9910WQhAt4.有一圆柱体,如下图所示,表面1温度1550KT,发射率10.8,表面2温度2275KT,发射率20.4,圆柱面3为重辐射表面,角系数3,10.308X。求表面1和表面2间的辐射换热量(10分)解:热阻网络图如下09.03.0221AA,18.03.06.03A616.0308.009.018.01,3133,1XAAX,384.0616.012,1X36.0109.08.08.011R,06.0109.04.04.012R9.28384.009.01112112XAR0.18616.009.012313RR1213231116.01128.918.02RRRRW)(1031.40.1606.0136.01)75.25.5(67.524421Φ优先看上面这一部分1.导温系数,式中式物体的导热系数,和分别为物体的密度和定压比热容。是材料传播温度变化能力大小的指标。2.流动边界层固体壁面附近流体,由于粘性导致速度急剧变化的薄层称为流动边界层(速度边界层)3.角系数表面1发出的辐射能中落到表面2上的百分数称为表面1对表面2的角系数。4.发射率实际物体的辐射力与同温度下黑体辐射力的比值称为实际物体的发射率。1.写出热扩散率的表达式,并说明其物理意义。(6分)答:ac热扩散率(导温系数),反映了导热过程中材料的导热能力(λ)与沿途物质储热能力(ρc)之间的关系。a值大,说明物体的某一部分一旦获得热量,该热量能在整个物体中很快扩散。2.经过白天太阳底下晒过的棉被,晚上盖起来感到暖和,并且经过拍打以后,效果更加明显,试解释原因。(6分)答:棉被经过晾晒以后,可使棉花的空隙进入更多的空气,而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。而经过拍打的棉被可以让更多的空气进入,因而效果更明显。3.写出努塞尔数Nu与毕渥数Bi表达式并比较异同。(6分)答:从形式上看,Nu数(hlNu)与Bi数(hlBi)完全相同,但二者的物理意义却不同。Nu数中为流体的导热系数,而一般h未知,因而Nu数一般是待定准则。Nu数的物理意义表示壁面附近流体的无量纲温度梯度,它表示流体对流换热的强弱。而Bi数中的为导热物体的导热系数,且一般情况下h已知,Bi数一般是已定准则。Bi数的物理意义是导热体内部导热热阻(l/)与外部对流热阻(1/h)的相对大小。4.厚度等于的常物性无限大平板,初始温度均匀为t0,过程开始后,左侧有一定热流密度qw的热源加热,右侧与低温流体tf相接触(t0tf),表面传热系数h等于常数,所有物性参数已知,写出该导热问题的数学描述。(6分)答:这是一个沿平板厚度方向的一维非稳态导热问题,其微分方程、边界及初始条件为微分方程:22ttcx初始条件:00,,0txt边界条件:00,xwxtxq,(,)xfxthxtt1.供暖系统中暖气片内的热水通过对流方式把热量传到管子内壁,然后以.导热方式热量传到管子外壁,最后通过对流+热辐射方式,使室内环境温度升高。2.多层平壁热流密度计算公式为111nniiittq。3.导热微分方程的一般形式为Vttttcxxyyzz,当热物性参数为常数时,上式可表示为222222Vttttcxyzc;对于常物性参数,无内热源的二维非稳态导热问题可表示为2222tttcxy;对于常物性参数,无内热源的一维稳态导热可表示为220dtdx。4.已知等截面直肋中沿肋高x过余温度分布θ与肋根部过余温度θ0之间关系为)()]([0mHchHxmch由此可得肋端部H过余温度为)(0mHch5.对流换热的种类按照流动的动力不同可分为强制对流和自然对流。6.二维稳态导热的有限差分方程1,1,,1,1,40mnmnmnmnmnttttt。1.某房间墙壁(从外到内)由一层厚度为240mm的砖层和一层厚度为20mm的灰泥构成。冬季外壁面温度为-10℃,内壁面温度为18℃时。求1)通过该墙体的热流密度是多少?2)两层材料接触面的温度是多少?已知砖的导热系数=0.7W/(mK),灰泥的导热系数=0.58W/(mK)。解:令砖层为1层,灰泥层为2层。外壁面为1,内壁面为2,中间接触面为3。2一直径为10cm,长60cm的钢圆柱体,初始温度为30℃,将其放入炉温为1200℃的加热炉中加热,升温到800℃后方可取出,设圆柱体与炉内烟气之间的复合表面传热系数为110W/(m2.K),钢的物性参数分别为c=0.48kJ/(kg.K),ρ=7753(kg/m3),λ=58.2(W/m.K)需要多长时间?解:首先采用集总参数法判据0.05110(/)220.047358.20.10.050.1VVRhhVABiMBiM可以采用集总参数法。2320033110π0.10.62π0.051.3107753480π0.050.680012000.3419exp301200exp1.310ln0.3419825.6s1.310ffhAcVtthAttcV3.某窑炉,侧墙高3m,总长12m,炉墙外壁壁温tw=170℃。已知周围空气温度tf=30℃,试求此侧墙的自然对流散热量。解:定性温度:tm=(170+30)/2℃=100℃查附录5得:m=3.21×10-2W/(m℃)m=23.13×10-6m2/sPrm=0.688空气的体胀系数av=1/T=1/373K-1由此计算出:33