高中物理常用结论及知识点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高中物理的常用结论及重要知识点一.力物体的平衡:1.几个力平衡,则一个力是与其它力合力平衡的力.2.两个力的合力:F大+F小F合F大-F小.三个大小相等的力平衡,力之间的夹角为1200.3.物体沿斜面匀速下滑,则tg.4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。此时速度、加速度相等,此后不等.5.同一根绳上的张力处处相等,大小相等的两个力其合力在其角平分线上.6.物体受三个力而处于平衡状态,则这三个力必交于一点(三力汇交原理).7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法.二.直线运动:1.匀变速直线运动:平均速度:TSSVVVVt2221212时间等分时:SSaTnn12,中间位置的速度:VVVS212222,纸带处理求速度、加速度:TSSVt2212,212TSSa,aSSnTn1212.初速度为零的匀变速直线运动的比例关系:等分时间:相等时间内的位移之比1:3:5:……等分位移:相等位移所用的时间之比3.竖直上抛运动的对称性:t上=t下,V上=-V下4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时间小于给出的时间时,用V2=2aS求滑行距离.5.“S=3t+2t2”:a=4m/s2,V0=3m/s.6.在追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等.7.运动的合成与分解中:船头垂直河岸过河时,过河时间最短.船的合运动方向垂直河岸时,过河的位移最短.8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解.三.牛顿运动定律:1.超重、失重(选择题可直接应用,不是重力发生变化)超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力.失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。有完全失重(加速度向下为g).2.沿光滑物体斜面下滑:a=gSingR4时间相等:450时时间最短:无极值:3.一起加速运动的物体:M1和M2的作用力为FmmmN212,与有无摩擦(相同)无关,平面、斜面、竖直都一样.4.几个临界问题:gtga注意角的位置!弹力为零弹力为零5.速度最大时往往合力为零:6.牛顿第二定律的瞬时性:不论是绳还是弹簧:剪断谁,谁的力立即消失;不剪断时,绳的力可以突变,弹簧的力不可突变.四.圆周运动、万有引力:1.向心力公式:vmRfmRTmRmRmvF22222244.2.同一皮带或齿轮上线速度处处相等,同一轮子上角速度相同.3.在非匀速圆周运动(竖直平面内的圆周运动)中使用向心力公式的办法:沿半径方向的合力是向心力.4.竖直平面内的圆运动:(1)“绳”类:最高点最小速度(此时绳子的张力为零),最低点最小速度(2)“杆”:最高点最小速度0(此时杆的支持力为mg),最低点最小速度5.开普勒第三定律:T2/R3=K(=4π2/GM){K:常量(与行星质量无关,取决于中心天体的质量)}.6.万有引力定律:F=GMm/r2=mv2/r=mω2r=m4π2r/T2(G=6.67×10-11N·m2/kg2)7.地球表面的万有引力等于重力:GMm/R2=mg;g=GM/R2(黄金代换式)8.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2(轨道半径变大时,线速度变小,角速度变小,加速度变小,势能变大,周期变大)9.第一(二、三)宇宙速度V1=(g地R地)1/2=(GM/R地)1/2=7.9km/s(注意计算方法);V2=11.2km/s;V3=16.7km/s10.地球同步卫星:T=24h,h=3.6×104km=5.6R地(地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同)11.卫星的最小发射速度和最大环绕速度均为V=7.9km/s,卫星的最小周期约为86分钟(环地面飞行的卫星)12.双星引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。13。物体在恒力作用下不可能作匀速圆周运动14。圆周运动中的追赶问题(钟表指针的旋转和天体间的相对运动):121TtTt,其中T1<T2。五.机械能:1.求功的途径:①用定义求恒力功.②用动能定理(从做功的效果)或能量守恒求功.③由图象求功.④用平均力求功(力与位移成线性关系).⑤由功率求功.2.功能关系--------功是能量转化的量度,功不是能.⑴重力所做的功等于重力势能的减少(数值上相等)⑵电场力所做的功等于电势能的减少(数值上相等)⑶弹簧的弹力所做的功等于弹性势能的减少(数值上相等)⑷分子力所做的功等于分子势能的减少(数值上相等)⑷合外力所做的功等于动能的增加(所有外力)⑸只有重力和弹簧的弹力做功,机械能守恒⑹克服安培力所做的功等于感应电能的增加(数值上相等)(7)除重力和弹簧弹力以外的力做功等于机械能的增加(8)功能关系:摩擦生热Q=f·S相对(f滑动摩擦力的大小,ΔE损为系统损失的机械能,Q为系统增加的内能)(9)静摩擦力可以做正功、负功、还可以不做功,但不会摩擦生热;滑动摩擦力可以做正功、负功、还可以不做功,但会摩擦生热。(10)作用力和反作用力做功之间无任何关系,但冲量等大反向。一对平衡力做功不是等值异号,就是都不做功,但冲量关系不确定。3.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体的动能.4.发动机的功率P=Fv,当合外力F=0时,有最大速度vm=P/f(注意额定功率和实际功率).5.00≤α900做正功;900α≤1800做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功).6.能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J.7.解决动力学问题的三条思路:路径物理规律适用的力能研究的量不能研究的量运用的场合运动定律运动定律加运动学公式恒力S,V,t无恒力作用过程动量动量定理动量守恒定律恒力或变力V,tS运动传递过程功、能动能定理机械能守恒定律能量守恒定律功能关系恒力或变力V,St能量转化过程六.电场:1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值(减少量):电电EW。2.粒子飞出偏转电场时“速度的反向延长线,通过沿电场方向的位移的中心”。3.讨论电荷在电场里移动过程中电场力的功基本方法:把电荷放在起点处,标出位移方向和电场力的方向,分析功的正负,并用W=FS计算其大小;或用W=qU计算.4.处于静电平衡的导体内部合场强为零,整个是个等势体,其表面是个等势面.5.电场线的疏密反映E的大小;沿电场线的方向电势越来越低;电势与场强之间没有联系.6.电容器接在电源上,电压不变;断开电源时,电容器电量不变;改变两板距离,场强不变。7.电容器充电电流,流入正极、流出负极;电容器放电电流,流出正极,流入负极。8.带电粒子在交变电场中的运动:①直线运动:不同时刻进入,可能一直不改方向的运动;可能时而向左时而向右运动;可能往返运动(可用图像处理)②垂直进入:若在电场中飞行时间远远小于电场的变化周期,则近似认为在恒定电场中运动(处理为类平抛运动);若不满足以上条件,则沿电场方向的运动处理同①③带电粒子在电场和重力场中做竖直方向的圆周运动用等效法:当重力和电场力的合力沿半径且背离圆心处速度最大,当其合力沿半径指向圆心处速度最小.9.沿电场线的方向电势越来越低,电势和场强大小没有联系.七.恒定电流:1.电流的微观定义式:I=nqsv2.等效电阻估算原则:电阻串联时,大的为主;电阻并联时,小的为主。3.电路中的一个滑动变阻器阻值发生变化,有并同串反关系:电阻增大,与它并联的电阻上电流或电压变大,与它串联的电阻上电流或电压变小;电阻减小,与它并联的电阻上电流或电压变小,与它串联的电阻上电流或电压变大.4.外电路任一处的一个电阻增大,总电阻增大,总电流减小,路端电压增大。外电路任一处的一个电阻减小,总电阻减小,总电流增大,路端电压减小。5.画等效电路的办法:始于一点(电源正极),止于一点(电源负极),盯住一点(中间等势点),步步为营。6.纯电阻电路中,内、外电路阻值相等时输出功率最大(R外=r),rEPm42;7.含电容电路中,电容器是断路,电容不是电路的组成部分,仅借用与之并联部分的电压。稳定时,与它串联的电阻是虚设,如导线。在电路变化时电容器有充、放电电流。恒定电流实验:1.考虑电表内阻的影响时,电压表和电流表在电路中,既是电表,又是电阻。2.选用电压表、电流表:①测量值不许超过量程。②测量值越接近满偏值(表针偏转角度越大)误差越小,一般应大于满偏值的三分之一。③电表不得小偏角使用,偏角越小,相对误差越大。3.选欧姆表时,指针偏角应在三分之一到三分之二之间(选档、换档后,经过“调零”才能进行测量)。.4.选限流用的滑动变阻器:在能把电流限制在允许范围内的前提下选用总阻值较小的变阻器调节方便;选分压用的滑动变阻器:阻值小的便于调节且输出电压稳定,但耗能多。5.分压式和限流式电路的选择:①题目要求电压或电流从零可调(校对电路、测伏安特性曲线),一定要用分压式。②滑动变阻器的最大值比待测电阻的阻值小很多时,限流式不起大作用,要用分压式。③用限流式时不能保证用电器安全时用分压式。④分压和限流都可以用时,限流优先(能耗小)。6.伏安法测量电阻时,电流表内、外接的选择:①RX远大于RA时,采用内接法,误差来源于电流表分压,测量值偏大;②RV远大于RX时,采用外接法,误差来源于电压表分流,测量值偏小.③AXRR大于XVRR时,采用内接法;AXRR小于XVRR时,采用外接法7.电压表或电流表中,电流大小与其偏转角成正比,一般有左进左偏,右进右偏8.测电阻常用方法:①伏安法②替代法③半偏法④比较法9.已知内阻的电压表可当电流表使用;已知内阻的电流表可当电压表使用;已知电流的定值电阻可当电压表使用;已知电压的定值电阻可当电流表使用.10.欧姆表的中值电阻刚好等于其欧姆表的内阻.八.磁场:1.圆形磁场区域:带电粒子沿半径方向进入,则出磁场时速度方向必过圆心2.粒子速度垂直于磁场时,做匀速圆周运动:qBmVR,qBmT2(周期与速率无关)。3.粒子径直通过正交电磁场(离子速度选择器):qEqvB,BEv。粒子穿过磁场的有关计算,抓几何关系,即入射点与出射点的半径和它们的夹角4.最小圆形磁场区域的计算:找到磁场边界的两点,以这两点的距离为直径的圆面积最小5.圆形磁场区域中飞行的带电粒子的最大偏转角为进入点和出点的连线刚好为磁场的直径6.要知道以下器件的原理:质谱仪、速度选择器、磁流体发电机、霍耳效应、电磁流量计、地磁场、磁电式电表原理、回旋加速器、电磁驱动、电磁阻尼、高频焊接等.7。带电粒子在匀强电场、匀强磁场和重力场中,如果做直线运动,一定做匀速直线运动。如果做匀速圆周运动,重力和电场力一定平衡,只有洛仑兹力提供向心力。8。电性相同的电荷在同一磁场中旋转时,旋转方向相同,与初速度方向无关。九.电磁感应:1.楞次定律的若干推论:(1)内外环电流或者同轴的电流方向:“增反减同”(2)导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。(3)磁场“╳增加”与“•减少”感应电流方向一样,反之亦然。(4)磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势2.运用楞次定律的若干经验:①内外环电路或者同轴线圈中的电流方向:“增反减同”②导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。③“×增加”与“·减少”,感应电流方向一样,反之亦然。④单向磁场磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势。通电螺线管外的线环则相反。⑤楞次定律逆

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功