2、1电流2.1.1.电流、电流强度、电流密度导体处于静电平衡时,导体内部场强处处为零。如果导体内部场强不为零,带电粒子在电场力作用下发生定向移动,形成了电流。形成电流条件是:存在自由电荷和导体两端有电势差(即导体中存在电场)。自由电荷在不同种类导体内部是不同的,金属导体中自由电荷是电子;酸、碱、盐在水溶液中是正离子和负离子;在导电气体中是正离子、负离子和电子。电流强度是描述电流强弱的物理量,单位时间通过导体横截面的电量叫做电流强度。用定义式表示为tqI/电流强度是标量。但电流具有方向性,规定正电荷定向移动方向为电流方向。在金属导体中电流强度的表达式是nevSIn是金属导体中自由电子密度,e是电子电量,v是电子定向移动平均速度,S是导体的横截面积。在垂直于电流方向上,单位面积内电流强度叫做电流密度,表示为SIj/金属导体中,电流密度为nevj电流密度j是矢量,其方向与电流方向一致。2.1.2、电阻定律导体的电阻为SLSLR/式中、称为导体电阻率、电导率1,由导体的性质决定。实验表明,多数材料的电阻率都随温度的升高而增大,在温度变化范围不大时,纯金属的电阻率与温度之间近似地有如下线性关系t100为0℃时电子率,为t时电阻率,为电阻率的温度系数,多数纯金属值接近于3104℃1,而对半导体和绝缘体电阻率随温度的升高而减小。某些导体材料在温度接近某一临界温度时,其电阻率突减为零,这种现象叫超导现象。超导材料除了具有零电阻特性外,还具有完全抗磁性,即超导体进入超导状态时,体内磁通量被排除在体外,可以用这样一个实验来形象地说明:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永磁铁,整个装置放入低温容器里,然后把温度降低到锡出现超导电性的温度。这时可以看到,小磁铁竟然离开锡盘表面,飘然升起与锡盘保持一定距离后,悬在空中不动了,如图2-2-1所示。这是由于超导体的完全抗磁性,使小磁铁的磁感线无法穿透超导体,磁场畸变产生一个向上的很大的排斥力,把磁铁托在空中,这就是磁悬浮的道理,这一特性启示了人们用超导材料制造磁悬浮列车。超导现象是1911年荷兰物理学家昂尼斯首先发现的。他发现在K2.4(8.268℃),汞的电阻突然消失,并把这种“零”电阻特性称为“超导电性”。接着他又发现在K3.7附近,铅也具有“超导性”。1933年,迈斯纳发现了超导的“完全抗磁性”,他证明处于磁场中的超导体NS图2-2-1可以把磁感线完全排斥在体外,从而使自身可以悬浮在磁体之上。这个现象称为“迈斯纳效应”。至今人们仍把“零电阻特性”和“完全抗磁性”作为判定材料达到“超导状态”的两个必要条件。例1、为了使一圆柱形导体棒电阻不随温度变化,可将两根截面积相同的碳棒和铁棒串联起来,已知碳的电阻率为m50105.3碳,电阻率温度系数4105碳℃1,而铁m80109.8铁,3105铁℃1求这两棒的长度之比是多少?解:各种材料的长度和截面积都会随温度变化而变化,但它们电阻率的变化比线度的变化要明显得多(一般相差两个数量级),因此可以忽略线度的变化。将t10代入SLR/,得tRR10式中0R为材料0℃时电阻将碳棒和铁棒串联,总电阻为tRtRRRRRR铁铁碳碳铁碳铁碳0000要R不随温度变化,必须有000tRtR铁铁碳碳由SLR/,可知截面积相同的两棒长度之比为3845105109.8105105.3铁铁碳碳碳铁LL1:3.392.1.3、电流密度和电场强度的关系通电导体中取一小段长L,其两端电压U,则有:SLISLIUjSIELU,/得到Ej上式给出了电流密度与推动电荷流动的电场之间的对应关系,更细致地描述了导体的导电规律,被称为欧姆定律的微分形式。①对于金属中的电流,上式中的还可有更深入的表示。当金属内部有电场时,所有自由电子都将在原有的热运动的基础上附加一个逆场强的定向运动,就是所有电子的这种定向运动形成宏观电流。由于与晶体点阵的碰撞,自由电子定向速度的增加受到限制。电子与晶体点阵碰撞后散射的速度沿各个方向几率相等,这样电子定向运动特征完全丧失,其定向速度为0。这样电子在电场力的作用下从零开始作匀加速运动,设两次碰撞之间的平均时间为,平均路程为,则电子定向运动平均速度。而,是电子热运动的平均速率。所以下面我们看电流密度矢量与电子定向运动平均速度的关系。在金属内部,在与垂直方向取一面积为的面元,以为底,为高作一个柱体。设单位体积内自由电子数为n,则单位时间内柱体内的所有为由电子能穿过面而形成电流,面上任一点的电流密度:的方向以正电荷运动方向为准,电子带负电,的方向与的方向相反代入,我们得到对于一定的金属导体,在一定温度下,是一定的,与欧姆定律的微分形式相比,金属的电导率为②对于导电液体,同样有更细微的表达式。能够导电的液体称为电解液。电解液中能自由移动的带电粒子是正、负离子。在没有外电场时,正负离子作无规则的热运动。在有外场作用时,液体中正负离子定向移动形成宏观电流,正、负离子的平均定向速度(以称迁移速度)和与所加的电场成正比。若单位体积内有n对正负离子,每个离子带电量q,考虑到负电荷的运动等效于等量的正电荷反方向的运动,则所研究面元的电流密度大小为定义单位场强下的迁移速度为迁移率,分别用和表示则对于一定浓度的某一种电解液,均为恒量,液体导电仍满足欧姆定律。