1常见的快速解题技巧(下)方法八:巧用等效法解题【典例8】如图2-2-13所示,已知回旋加速器中,D形盒内匀强磁场的磁感应强度B=1.5T,盒的半径R=60cm,两盒间隙d=1.0cm,盒间电压U=2.0×104V,今将α粒子从近于间隙中心某点向D形盒内以近似于零的初速度垂直B的方向射入,求粒子在加速器内运行的总时间.解析:带电粒子在回旋加速器转第一周,经两次加速,速度为v1,则根据动能定理得:2qU=21mv12设运转n周后,速度为v,则:n2qU=21mv2由牛顿第二定律有qvB=mRv2粒子在磁场中的总时间:tB=nT=n·qBm2=qmURqB4222·qBm2=UBR22粒子在电场中运动就可视作初速度为零的匀加速直线运动,由公式:tE=avvt0,且v0=0,vt=mqBR,a=dmqU得:tE=UBRd故:t=tB+tE=UBR(2R+d)=4.5×10-5×(0.94+0.01)s=4.3×10-5s.【技巧点拨】粒子在间隙处电场中每次运动时间不相等,且粒子多次经过间隙处电场,如果分段计算,每一次粒子经过间隙处电场的时间,很显然将十分繁琐.我们注意到粒子离开间隙处电场进入匀强磁场区域到再次进入电场的速率不变,且粒子每在电场中加速度大小相等,所以可将各段间隙等效“衔接”起来,把粒子断断续续在电场中的加速运动等效成初速度为零的匀加速直线运动.技巧九:巧用对称法解题【典例9】一根自由长度为10cm的轻弹簧,下端固定,上端连一个质量为m的物块P,在P上放一个质量也是m的物块Q.系统静止后,弹簧长度为6cm,如图2-2-14所示.如果迅速向上移去Q,物块P将在竖直方向做简谐运动,此后弹簧的最大长度为A.8cmB.9cmC.10cmD.11cm解析:移去Q后,P做简谐运动的平衡位置处弹簧长度8cm,由题意可知刚移去Q时P物体所处的位置为P做简谐运动的最大位移处.即P做简谐运动的振幅为2cm.当物体P向上再次运动到速度为零时弹簧有最大长度,此时P所处的位置为另一最大位移处,根据简谐运动的对称性可知此时弹簧的长度为10cm,C正确.【方法链接】在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性.方法十:巧用假设法解题假设法是解决物理问题的一种常见方法,其基本思路为假设结论正确,经过正确的逻辑推理,看最终的图2-2-14PQ6cm图2-2-132图2-2-15d1d21/V11/V21/VdO推理结果是否与已知条件相矛盾或是否与物理实际情境相矛盾来判断假设是否成立.【典例10】如图2-2-15,abc是光滑的轨道,其中ab是水平的,bc为与ab相切的位于竖直平面内的半圆,半径R=0.3m.质量m=0.2kg的小球A静止在轨道上,另一质量M=0.6kg,速度V0=5.5m/s的小球B与小球A正碰.已知相碰后小球A经过半圆的最高点C,落到轨道上距b为L=处,重力加速度g=10m/s2,试通过分析计算判断小球B是否能沿着半圆轨道到达C点.解析:A、B组成的系统在碰撞前后动量守恒,碰后A、B运动的过程中只有重力做功,机械能守恒,设碰后A、B的速度分别为V1、V2,由动量守恒定律得MV0=MV2+mV1A上升到圆周最高点C做平抛运动,设A在C点的速度为VC,则A的运动满足关系式2R=gt2/2VCt=LA从b上升到c的过程中,由机械能守恒定律得(以ab所在的水平面为零势面,以下同)mV12/2=mVC2/2+2mgR∴V1=6m/s,V2=3.5m/s方法1:假设B球刚好能上升到C点,则B球在C点的速度VC'应满足关系式Mg=MVC'2/R所以VC'=1.73m/s则B球在水平轨道b点应该有的速度为(设为Vb)由机械能守恒定律得MVb2/2=MVC'2/2+2MgR则由Vb与V2的大小关系可确定B能否上升到C点若V2≥Vb,B能上升到C点若V2<Vb,B不能上升到C点代入数据得Vb=3.9m/s>V2=3.5m/s,所以B不能上升到C点.【方法链接】假设法在物理中有着很广泛的应用,凡是利用直接分析法很难得到结论的问题,用假设法来判断不失为一种较好的方法,如判断摩擦力时经常用到假设法,确定物体的运动性质时经常用到假设法.技巧十一、巧用图像法解题【典例11】部队集合后开发沿直线前进,已知部队前进的速度与到出发点的距离成反比,当部队行进到距出发点距离为d1的A位置时速度为V1,求(1)部队行进到距出发点距离为d2的B位置时速度为V2是多大?(2)部队从A位置到B位置所用的时间t为多大.解析:(1)已知部队前进的速度与到出发点的距离成反比,即有公式V=k/d(d为部队距出发点的距离,V为部队在此位置的瞬时速度),根据题意有V1=k/d1V2=k/d2∴V2=d1V1/d2.(2)部队行进的速度V与到出发点的距离d满足关系式d=k/V,即d-图象是一条过原点的倾斜直线,如图2-2-16所示,由题意已知,部队从A位置到B位置所用的时间t即为图中斜线图形(直角梯形)的面积.由数学知识可知t=(d1+d2)(1/V2-1/V1)/2∴t=(d22-d12)/2d1V1【方法链接】1.此题中部队行进时速度的变化即不是匀速运动,也不是匀变速运动,很难直接用运动学规律进行求解,而应用图象求解则使问题得到简化.图2-2-163V图2-2-182-2-192.考生可用类比的方法来确定图象与横轴所围面积的物理意义.v-t图象中,图线与横轴围成图形的面积表示物体在该段时间内发生的位移(有公式S=vt,S与vt的单位均为m);F-S图象中,图线与横轴围成图形的面积表示F在该段位移S对物体所做的功(有公式W=FS,W与FS的单位均为J).而上述图象中t=d×1/V(t与d×1/V的单位均为s),所以可判断出该图线与横轴围成图形的面积表示部队从出发点到此位置所用的时间.技巧十二、巧用极限法解题【典例12】如图2-2-17所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上,现用水平力F拉绳上一点,使物体处于图中实线位置,然后改变F的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F、环与杆的摩擦力F摩和环对杆的压力FN的变化情况是A.F逐渐增大,F摩保持不变,FN逐渐增大B.F逐渐增大,F摩逐渐增大,FN保持不变C.F逐渐减小,F摩逐渐增大,FN逐渐减小D.F逐渐减小,F摩逐渐减小,FN保持不变解析:在物体缓慢下降过程中,细绳与竖直方向的夹角θ不断减小,可把这种减小状态推到无限小,即细绳与竖直方向的夹角θ=0;此时系统仍处于平衡状态,由平衡条件可知,当θ=0时,F=0,F摩=0.所以可得出结论:在物体缓慢下降过程中,F逐渐减小,F摩也随之减小,D答案正确.【方法链接】极限法就是运用极限思维,把所涉及的变量在不超出变量取值范围的条件下,使某些量的变化抽象成无限大或无限小去思考解决实际问题的一种解题方法,在一些特殊问题当中如能巧妙的应用此方法,可使解题过程变得简捷.方法十三、巧用转换思想解题【典例13】如图2-2-18所示,电池的内阻可以忽略不计,电压表和可变电阻器R串联接成通路,如果可变电阻器R的值减为原来的1/3时,电压表的读数由U0增加到2U0,则下列说法中正确的是A.流过可变电阻器R的电流增大为原来的2倍B.可变电阻器R消耗的电功率增加为原来的4倍C.可变电阻器两端的电压减小为原来的2/3D.若可变电阻器R的阻值减小到零,那么电压表的示数变为4U0确解析:在做该题时,大多数学生认为研究对象应选可变电阻器,因为四个选项中都问的是有关R的问题;但R的电阻、电压、电流均变,判断不出各量的定量变化,从而走入思维的误区.若灵活地转换研究对象,会出现“柳暗花明”的意境;分析电压表,其电阻为定值,当它的读数由U0增加到2U0时,通过它的电流一定变为原来的2倍,而R与电压表串联,故选项A正确.再利用P=I2R和U=IR,R消耗的功率P′=(2I)2R/3=4P/3;R后来两端的电压U=2IR/3,不难看出C对B错.又因电池内阻不计,R与电压表的电压之和为U总,当R减小到零时,电压表的示数也为总电压U总;很轻松地列出U总=IR+U0=2IR/3+2U0,解得U总=4U0,故D也对.【方法链接】常见的转换方法有研究对象的转换、时间角度的转换、空间角度的转换、物理模型的转换,本例题就是应用研究对象的转换思想巧妙改变问题的思考角度,从而达到使问题简化的目的.技巧十四、巧用结论解题【典例14】如图2-2-19所示,如图所示,质量为3m的木板静止放在光滑的水平面上,木板左端固定着一根轻弹簧.质量为m的木块(可视为质点),它从木板右端以未知速度V0开始沿木板向左滑行,最终回到木板右端刚好未从木板上滑出.若在小木块压缩弹簧的过程中,弹簧具有的最大弹图2-2—174图2-2-22性势能为EP,小木块与木板间的动摩擦因数大小保持不变,求:(1)木块的未知速度V0(2)以木块与木板为系统,上述过程中系统损失的机械能解析:系统在运动过程中受到的合外力为零,所以系统动量定恒,当弹簧压缩量最大时,系统有相同的速度,设为V,根据动量守恒定律有mV0=(m+3m)V木块向左运动的过程中除了压缩弹簧之外,系统中相互作用的滑动摩擦力对系统做负功导致系统的内能增大,根据能的转化和守恒定律有mV02/2-(m+3m)V2/2=EP+μmgL(μ为木块与木板间的动摩擦因数,L为木块相对木板走过的长度)由题意知木块最终回到木板右端时刚好未从木板上滑出,即木块与木板最终有相同的速度由动量守恒定律可知最终速度也是V.整个过程中只有系统内相互作用的滑动摩擦力做功(弹簧总功为零),根据能量守恒定律有mV02/2-(m+3m)V2/2=2μmgL∴有,EP=μmgL故系统损失的机械能为2EP.【误点警示】根据能的转化和守恒定律,系统克服滑动摩擦力所做的总功等于系统机械能损失,损失的机械能转化为系统的内能,所以有f滑L相对路程=△E(△E为系统损失的机械能).在应用公式解题时,一定要注意公式成立所满足的条件.当系统中只有相互作用的滑动摩擦力对系统做功引起系统机械能损失(其它力不做功或做功不改变系统机械能)时,公式f滑L相对路程=△E才成立.如果系统中除了相互作用的滑动摩擦力做功还有其它力对系统做功而改变系统机械能,则公式f滑L相对路程=△E不再成立,即系统因克服系统内相互作用的滑动摩擦力所产生的内能不一定等于系统机械能的损失.所以同学们在应用结论解题时一定要注意公式成立的条件是否满足,否则很容易造成错误.方法十五、巧用排除法解题【典例15】如图2-2-22所示,由粗细均匀的电阻丝制成的边长为L的正方形线框abcd,其总电阻为R.现使线框以水平向右的速度v匀速穿过一宽度为2L、磁感应强度为B的匀强磁场区域,整个过程中ab、cd两边始终保持与磁场边界平行.令线框的cd边刚好与磁场左边界重合时开始计时(t=0),电流沿abcda流动的方向为正,Uo=BLv.在下图中线框中a、b两点间电势差Uab随线框cd边的位移x变化的图像正确的是下图中的解析:当线框向右穿过磁场的过程中,由右手定则可判断出总是a点的电势高于b点电势,即Uab>0,所以A、C、D错误,只有B项正确.【方法链接】考生可以比较题设选项的不同之外,而略去相同之处,便可得到正确答案,或者考生能判断出某三个选项是错误的,就没必要对另外一个选项做出判断而应直接把其作为正确答案.对本例题,考生只需判断出三个过程中(进磁场过程、全部进入磁场过程、出磁场过程)中a、b两点电势的高低便可选择出正确答案,而没有必要对各种情况下a、b两点电势大小规律做出判断.xx