圆(全)知识点习题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1圆一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有dr点P在⊙O外;d=r点P在⊙O上;dr点P在⊙O内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:2(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离dR.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O有两个公共点直线l和⊙O相交dR.9.圆和圆的位置关系:设的半径为R、r(Rr),圆心距.3(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离dR+r.(2)没有公共点,且的每一个点都在外部内含dR-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-rdR+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl,全面积为,母线长、圆锥高、底面圆的半径之间有.一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角;圆周角;(2)如图,已知∠AOB=50度,则∠ACB=度;(3)在上图中,若AB是圆O的直径,则∠AOB=度;OACB43、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有dr,点在圆(2)当d=7厘米时,有dr,点在圆(3)当d=5厘米时,有dr,点在圆4、直线和圆的位置关系有三种:相、相、相.例:已知圆的半径r等于12厘米,圆心到直线l的距离为d,(1)当d=10厘米时,有dr,直线l与圆(2)当d=12厘米时,有dr,直线l与圆(3)当d=15厘米时,有dr,直线l与圆5、圆与圆的位置关系:例:已知⊙O1的半径为6厘米,⊙O2的半径为8厘米,圆心距为d,则:R+r=,R-r=;(1)当d=14厘米时,因为dR+r,则⊙O1和⊙O2位置关系是:(2)当d=2厘米时,因为dR-r,则⊙O1和⊙O2位置关系是:(3)当d=15厘米时,因为,则⊙O1和⊙O2位置关系是:(4)当d=7厘米时,因为,则⊙O1和⊙O2位置关系是:(5)当d=1厘米时,因为,则⊙O1和⊙O2位置关系是:6、切线性质:例:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO=度(2)如图,PA、PB是⊙O的切线,点A、B是切点,则=,∠=∠;7、圆中的有关计算(1)弧长的计算公式:OBPA5例:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少?解:因为扇形的弧长=()180所以l=()180=(答案保留π)(2)扇形的面积:例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少?(3)圆锥:例:圆锥的母线长为5cm,半径为4cm,则圆锥的侧面积是多少?解:∵圆锥的侧面展开图是形,展开图的弧长等于∴圆锥的侧面积=8、三角形的外接圆的圆心——三角形的外心——三角形的交点;三角形的内切圆的圆心——三角形的内心——三角形的交点;基础练习一。1.⊙O的半径为6,线段OP的长度为8,则点P与圆的位置关系是().A.点在圆上B.点在圆外C.点在圆内D.无法确定2.如图,DE是⊙O直径,弦AB⊥DE,垂足为C,若AB=6,CE=1,则CD=________,OC=_________.图2图33.如图,四边形ABCD内接于⊙O,若∠BOD=160,则∠BCD=()A.160B.100C.80D.204.如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,则∠BCD=()6A.105°B.120°C.135°D.150°图45.如果一个圆的半径是8cm,圆心到一条直线的距离也是8cm,那么这条直线和这个圆的位置关系是()A.相离B.相交C.相切D.不能确定6.下列命题正确的是()A.经过半径外端的直线是圆的切线B.直线和圆有公共点,则直线和圆相交C.过圆上一点有且只有一条圆的切线D.圆的切线垂直于半径7.如图,PA切⊙O于点A,若∠APO=30°,OP=2,则⊙O半径是()A.B.1C.2D.48.圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为()A.1B.3C.1或2D.1或31.答案:B知识点:点与圆的位置关系中考中占的分值32.答案:3,1知识点:垂径定理及其推论中考中占的分值33.答案:B知识点:与圆有关的角中考中占的分值34.答案:B知识点:圆心角、弧、弦、弦心距的关系中考中占的分值35.答案:C知识点:直线和圆的位置关系中考中占的分值36.答案:C知识点:切线的判定方法中考中占的分值37.答案:B知识点:圆的切线的性质中考中占的分值38.答案:D知识点:两圆的五种位置关系7圆的练习一、选择题1.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题的是()A.①②B.②③C.①③D.①②③2.下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1个B.2个C.3个D.4个3.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等D.以上说法都不对4.⊙O中,∠AOB=∠84°,则弦AB所对的圆周角的度数为()A.42°B.138°C.69°D.42°或138°5.如图,已知A、B、C是⊙O上的三点,若∠ACB=44°.则∠AOB的度数为()A.44°B.46°C.68°D.88°6.如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,错误的是()A.CE=DEB.C.∠BAC=∠BADD.AC>AD7.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4B.6C.7D.88.如图,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于()A.140°B.110°C.120°D.130°9.如图,⊙O的直径CD垂直于弦EF,垂足为G,若∠EOD=40°,则∠DCF等于()8A.80°B.50°C.40°D.20°10.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5二、填空题1.如图,AB为⊙O直径,E是中点,OE交BC于点D,BD=3,AB=10,则AC=_____.2.如图,⊙O中,若∠AOB的度数为56°,∠ACB=_________.3.如图,AB是⊙O的直径,CD是弦,∠BDC=25°,则∠BOC=________.4.如图,等边ΔABC的三个顶点在⊙O上,BD是直径,则∠BDC=________,∠ACD=________.若CD=10cm,则⊙O的半径长为________.5.如图所示,在⊙O中,AB是⊙O的直径,∠ACB的角平分线CD交⊙O于D,则∠ABD=______度.96.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经助攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择________种射门方式.三、解答题1.如图,AB为⊙O的直径,CD为弦,过C、D分别作CN⊥CD、DM⊥CD,分别交AB于N、M,请问图中的AN与BM是否相等,说明理由.2.如图,在⊙O中,C、D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M、N在⊙O上.(1)求证:=;(2)若C、D分别为OA、OB中点,则成立吗?3.如图,已知AB=AC,∠APC=60°(1)求证:△ABC是等边三角形.(2)若BC=4cm,求⊙O的面积10基础达标一、选择题1.A2.C3.D4.D5.D6.D7.D8.D9.D10.A二、填空题1.82.28°3.50°4.60°,30°,10cm5.456.第二三、解答题1.AN=BM理由:过点O作OE⊥CD于点E,则CE=DE,且CN∥OE∥DM.∴ON=OM,∴OA-ON=OB-OM,∴AN=BM.2.(1)连结OM、ON,在Rt△OCM和Rt△ODN中OM=ON,∵OA=OB,AC=DB,∴OC=OD,∴Rt△OCM≌Rt△ODN,∴∠AOM=∠BON,∴(2)提示:同上,在Rt△OCM中,,同理,.3.(1)证明

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功