有关弹塑性力学理论在实际工程中应用的论述摘要:弹塑性力学的理论基础得到了不断完善和补充,其理论体系日渐完善。同时,弹塑性力学的工程应用领域也在迅速扩大,一些原先纸上谈兵的理论已经变成工程师手中不可缺少的工具。弹塑性力学在工程方面的应用已经十分广泛,相信随着理论的不断充实完善以及新的施工设备及施工方法的不断涌现,弹塑性力学理论会在实际工程中得到越来越广泛的应用。Abstract:Elastic-plasticmechanicstheoryfoundationhasbeenconstantlyimprovingandsupplement,itstheoreticalsystemisincreasinglyperfect.Atthesametime,theelasticandplasticmechanicalengineeringapplicationfieldsarealsoexpandingrapidly,someoftheoriginalacademictheoryhasbecomeaindispensabletoolengineer.Elastic-plasticmechanicshasbeenwidelyappliedinengineering,believethatthetheoryconstantlyenrichandperfectthenewconstructionequipmentandconstructionmethod,theelastic-plasticmechanicstheorywillgetmoreandmorewidelyusedinactualengineering.关键词:弹性力学;塑性力学;数值模拟。引言弹性力学和塑性力学是现代固体力学的分支、是固体力学的两个重要部分,固体力学是研究固体材料及其构成的物体结构在外部干扰(载荷、温度交化等)下的力学响应的科学,按其研究对象区分为不同的学科分支。弹性力学和塑性力学的任务,一般就是在实验所建立的关于材料变形的力学基础上,用严谨的数学方法来研究各种形状的变形固体在外荷载作用下的应力、应变和位移。弹性力学又称弹性理论,是固体力学最基本也是最主要的内容,从宏观现象规律的角度,利用连续数学的工具研究任意形状的弹性物体受力后的变形、各点的位移、内部的应变与应力的一门科学,它的研究对象是“完全弹性体”。塑性力学又称塑性理论,是研究物体塑性的形成及其应力和变形规律的一门科学,它是继弹性力学之后,对变形体承载能力认识的发展深化。弹塑性理论研究的对象是弹性体,指的是一种物体在每一种给定的温度下,存在着应力和应变的单值关系,与时间无关。通常这一关系是线性的,当外力取消后,应变随即消失,物体能够恢复原来的状态,同时物体内的应力也完全消失。弹塑性理论在工程上有着广泛的应用,经常结合有限元软件分析结构及杆件产生的内力、位移、变形等条件判断结构是否满足安全性、耐久性等其他方面的要求。1.塑性力学和弹性力学的区别和联系固体力学是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正是固体力学中的两个重要分支。弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。1.1基本假定1、弹性力学:(1)假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。(2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。(3)假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。(4)假设物体是各向同性的。也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。2、塑性力学:(1)材料是连续的,均匀的。(2)平均正应力(静水压力)不影响屈服条件和加载条件。(3)体积的变化是弹性的。(4)不考虑时间因素对材料性质的影响。1.2基本内容(一)弹性力学弹性力学问题的求解主要是基于以下几个理论基础。1.Newton定律弹性力学是一门力学,它服从Newton所提出的三大定律,即惯性定律﹑运动定律,以及作用与反作用定律。质点力学和刚体力学是从Newton定律演绎出来的,而弹性力学不同于理论力学,它还有新假设和新定律。2.连续性假设所谓连续性假设,就是认定弹性体连续分布于三维欧式空间的某个区域之内,与此相伴随的,还认定弹性体中的所有物理量都是连续的。也就是说,我们将假定密度、位移、应变、应力等物理量都是空间点的连续变量,而且也将假定空间的点变形前与变形后应该是一一对应的。3.广义Hooke定律所谓广义Hooke定律,就是认为弹性体受外载后其内部所生成的应力和应变具有线性关系。对于大多数真实材料和人造材料,在一定的条件下,都符合这个实验定律。线性关系的Hooke定律是弹性力学特有的规律,是弹性力学区别于连续介质力学其他分支的标识。Newton定律、连续性假设和广义Hooke定律,这三方面构成了弹性力学的理论基础。(二)塑性力学人们对塑性变形基本规律的认识主要来自于实验。从实验中找出在应力超出弹性极限后材料的特性,将这些特性进行归纳并提出合理的假设和简化模型,确定应力超过弹性极限后材料的本构关系,从而建立塑性力学的基本方程。解出这些方程,便可得到不同塑性状态下物体内的应力和应变。塑性力学研究的基本试验有两个。一是简单拉伸实验,另一是静水压实验。从材料简单拉伸的应力-应变曲线可以看出,塑性力学研究的应力与应变之间的关系是非线性的,它们的关系也不是单值对应的。而静水压可使材料可塑性增加,使原来处于脆性状态的材料转化为塑性材料。为了便于计算,人们往往根据实验结果建立一些假设。比如:材料是各向同性和连续的;材料的弹性性质不受影响;只考虑稳定材料;与时间因素无关等。对于不同的材料,不同的应用领域,我们可以采用不同的变形体的模型,这种模型必须符合材料的实际性质。不同的材料有不同的拉伸曲线,但它们具有一些共同性质。总而言之,弹性与塑性有着密切的联系,同时又有着各自的定义及方法。随着生产和科学研究不断发展的要求,弹性力学和塑性力学也必将得到进一步的发展。2.弹塑性力学在实际工程中的应用弹塑性力学在桩基础、浅基础、边坡、码头、隧道、桥梁等工程方面的应用十分广泛。下面就列举一下有关弹塑性力学的工程应用实例。大梁隧道(DK328+820~DK335+370)为兰新铁路第二双线甘青段关键性工程,全长6550m,为双线铁路隧道,位于青海省门源县,轨面最高海拔3907m,地处祁连山中高山区,平均海拔3600~4200m,最高海拔为4430m。洞内线路纵坡为6‰-10‰的人字坡。隧道设一斜井,斜井长度1070m,进入正洞里程DK331+866处。针对大梁隧道工程地质特点,开展隧洞开挖后围岩大变形现场监测与分析,得知隧洞变形具有变形速度快、持续时间长和变形量大的特点,最大下沉量可达55cm,最大变形速率为1.69cm/d[1]。通过开展岩石试样单轴、三轴压缩破坏试验,采用广义Hoek-Brown准则,确定岩体常规弹塑性力学参数;结合隧洞变形监测数据,将隧洞围岩视为具有弹塑性流变行为的连续介质,采用经验流变模型,开展有限元反演分析,得到岩体流变力学参数。根据数值仿真结果,分析隧道围岩位移、应力及损伤区分布规律,从而为支护方案修改设计和参数调整提供依据。在上述研究基础上,应用新奥法施工力学原理,提出加大预留变形量,拱顶超前注浆加固围岩,打拱脚长锚杆控制拱架整体下沉,并采用钢拱架(拱架之间采用型钢连接)+锚杆+钢筋网协同支护,构成软岩大变形洞段联合支护方案,成功解决了大梁隧道破碎、软弱围岩地段的施工与支护难题,经施工后巷道稳定性良好。结合湖北随州两河口水库大坝防渗墙的工程实例,采用外掺膨润土技术将水胶比、膨润土掺量和砂率作为三因素进行混凝土配合比正交试验,研究各因素对塑性混凝土性能的影响,提出满足工程要求的混凝土配合比。结合湖北蕲春大同水库大坝防渗墙的工程实例,针对低弹塑性混凝土的特点,对混凝土的配合比及性能进行了研究,采用外掺膨润土、粘土、粉煤灰及土灰同掺的方法进行试验,研究各种外掺材料对低弹塑性混凝土的影响,提出满足工程要求的混凝土配合比。低弹塑性混凝土的具有抗压强度较低,弹性模量较低,渗透系数较小的力学性能,很适合于水利工程中作为大坝基础的防渗墙。文献[2]结合两个水利工程实例,在实验室采用掺加掺合料的方法及正交试验等方式对防渗墙低弹塑性混凝土综合试验,经过对配制的塑性混凝土力学性能进行分析,并且确定了防渗墙施工的配合比,经现场应用验证了施工的低弹塑性混凝土满足防渗墙设计要求。陈军明在文献[3]中通过分析我国现行《钢结构设计规范》GB50017-2003,对比美、欧规范,针对钢结构常用受力构件设计的强度问题和稳定问题涉及到的弹塑性理论应用,通过研究钢结构构件设计原理和弹塑性设计方法,深入分析弹性设计理论和弹塑性设计理论的差异,认识到弹塑性理论在钢结构设计中应用的必要性。舟山国家石油储备基地位于宁波以东某岛,南邻东海,库区占地面积137公顷,设计总库容为500万m3,油罐共9组,每组油罐最多6座,油罐直径为80m,高度为21.8m,单个油罐储量达10万m3。为了考虑结构性软土的影响,引入结构损伤变量,在岩土损伤力学理论和经典的修正剑桥模型基础上建立扩展的弹塑性损伤模型,通过固结压缩试验和三轴剪切试验确定模型参数。在通用有限元软件ABAQUS平台上开发所建立的弹塑性损伤模型UMAT子程序。将所建立弹塑性损伤模型应用到室内固结压缩试验和现场堆载预压试验的数值模拟中,并与修正剑桥模型所得结果进行对比。结果表明[4]:当荷载较低时,弹塑性损伤模型计算所得沉降小于修正剑桥模型的结果;当荷载大于结构屈服压力时,弹塑性损伤模型计算所得沉降大于修正剑桥模型的结果,即弹塑性损伤模型能够反映软土结构性的特点。参考数值模拟结果进行工程设计,采用堆载预压法对舟山国家石油储备基地试验区进行地基加固。在实际隧道施工过程中,隧道开挖引起地下岩体应力重分布使得围岩的微裂纹扩展损伤,并伴随有塑性流动变形。在地下水环境中对于孔隙和微裂隙围岩介质受到应力作用时,在内部将产生高孔隙水压力影响岩石的力学性质,也改变了围岩的破坏模式。吉林抚松隧道位于白山市靖宇县境内,里程桩号:左幅ZK275+170~ZK276+795,洞长为1625m,右幅RK275+180~RK276+780,洞长为1600m。隧道为分离式双洞隧道,两洞设计线间距为13~35m,近直线展布。隧道最大开挖宽度约12.00m,高度为7.60m。隧道多数洞段埋藏较深,岩性为上侏罗系角砾凝灰岩、含钙质粉砂质泥岩、灰质泥岩岩质为较坚硬~较软岩,凝灰质细砂岩为坚