高等数学(数二)复习知识点及作业按照同济大学高等数学第六版制定第一章函数与极限(时间1周,每天2-3小时)章节复习知识点及作业大纲要求1.1函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式.注:一、集合二、映射P17-20双曲函数(不用看)习题1-1:4,5,8,9,15,161.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.1.2数列极限的定义,数列极限的性质(唯一性、有界性、保号性)注:用定义证明极限不用看习题1-2:1,4,5,6注:记住4,5,6的结论,不用证明1.3函数极限的定义与基本性质(极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等)注:用定义证明极限不用看习题1-3:1,2,41.4无穷小与无穷大的定义,它们之间的关系,以及与极限的关系习题1-4:4,6,71.5极限的运算法则(6个定理以及一些推论)习题1-5:1,2,3,4,51.6重点两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼准则求极限,求递归数列的极限.习题1-6:1,2,41.7无穷小阶的概念(同阶无穷小、等价无穷小、高阶无重点穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法.习题1-7:1,2,3,49.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.1.8重点函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。习题1-8:2,3,4,51.9连续函数的运算与初等函数的连续性(包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性)习题1-9:3,4,5,61.10重点理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理(零点定理对于证明根的存在是非常重要的一种方法).注:P72一致连续性(不用看)习题1-10:1,2,5总复习题一:1,2,3,4,5,9,10,11,12第二章导数与微分(时间1周,每天2-3小时)2.1导数的定义、几何意义、,单侧与双侧可导的关系,可导与连续之间的关系(非常重要,经常会出现在选择题中),函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限.会求平面曲线的切线方程和法线方程.习题2-1:6,7,9,11,14,15,16,17,18,19,201.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,2.2重点复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,(幂、指数函数求导法,反函数求导法),分段函数求导法.习题2-2:2,3,5,7,8,10,11,14掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.2.3重点高阶导数求法(归纳法,分解法,用莱布尼兹法则)习题2-3:2,3,10,11,122.4重点由参数方程确定的函数的求导法,隐函数的求导法,相关变化率习题2-4:2,4,7,8,9,10,112.5函数微分的定义,微分的几何意义,微分运算法则注:P119微分在近似计算中的应用(不用看)习题2-5:2,3,4总复习题二:1,2,3,5,6,7,8,9,10,11,12,13,14第三章微分中值定理与导数的应用(时间1周,每天2-3小时)3.1重点微分中值定理及其应用(费马定理及其几何意义,罗尔定理及其几何意义,拉格朗日定理及其几何意义、柯西定理及其几何意义)习题3-1:5-121.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.2.掌握用洛必达法则求未定式极限的方法.3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.4.会用导数判断函数图形的凹凸性.5.会求函数图形的拐点以及水平、铅直和斜渐近线,3.2重点洛比达法则及其应用习题3-2:1-43.3重点泰勒中值定理,麦克劳林展开式习题3-3:1-7,103.4重点求函数的单调性、凹凸性区间、极值点、拐点、渐进线(选择题及大题常考)习题3-4:1,2,4,5,8,9,12,13,14,153.5重点函数的极值,(一个必要条件,两个充分条件),最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题习题3-5:1,4,5,6,73.6简单了解利用导数作函数图形(一般出选择题及判断图形题),对其中的渐进线和间断点要熟练掌握.习题3-6:2,4会描绘函数的图形.6.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.3.7弧微分,曲率的概念,曲率圆与曲率半径.注:P175曲率中心的计算公式渐屈线与渐伸线不用看习题3-7:1-5总复习题三:1,2,4,6,7,8,10,11,12,20第四章不定积分(时间1周,每天2-3小时)4.1原函数与不定积分的概念与基本性质(它们各自的定义,之间的关系,求不定积分与求微分或导数的关系),基本的积分公式,原函数的存在性习题4-1:1,71.理解原函数的概念,理解不定积分的概念.2.掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.2重点换元积分法习题4-2全部4.3重点分部积分法习题4-3全部4.4有理函数的积分习题4-4全部4.5积分表的使用(不用看)总习题四:全部第五章定积分(时间1周,每天2-3小时)5.1定积分的概念与性质(可积存在定理)(定积分的7个性质)注:P228定积分的近似计算(不考)习题5-1:4,10,131.理解定积分的概念.2.掌握定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.5.2重点微积分的基本公式积分上限函数及其导数牛顿-莱布尼兹公式习题5-2:1-125.3重点定积分的换元法与分部积分法习题5-3:1,2,3,4,6,75.4反常积分无界函数反常积分与无穷限反常积分习题:5-4:1-35.5反常积分的审敛法(不考)总复习题五:1,3,4,5,6,7,10,13第六章定积分的应用(时间1周,每天2-3小时)6.1定积分元素法掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.6.2重点定积分的几何应用(求平面曲线的弧长,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积,求旋转曲面的面积)习题6-2:1,2,3,4,5,6,7,8,9,11,12,13,15,16,21,226.3定积分在物理学上的应用(变力沿直线所做的功,水压力,引力)习题6-3:1-12总复习题六:1-6第七章微分方程(时间1周,每天2-3小时)7.1微分方程的基本概念(微分方程及其阶、解、通解、初始条件和特解)习题7-1:1,2,3,4,51.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解可降阶的微分方程4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函7.2重点可分离变量的微分方程(可分离变量的微分方程的概念及其解法)习题7-2:1,27.3重点齐次方程(一阶齐次微分方程的形式及其解法)习题7-3:1,27.4重点一阶线性微分方程,伯努利方程习题7—4:1,2注:伯努利方程数学二不考7.5重点可降阶的高阶微分方程习题7-5:1,27.6重点高阶线性微分方程(微分方程的特解、通解)习题7-6:1-47.7重点常系数齐次线性微分方程(特征方程,微分方程通解中对应项)习题7-7:1,27.8重点常系数非齐次线性微分方程(会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程)习题7-8:1,2数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.总复习题七:3,4,5,7第八章空间解析几何与向量代数注:本章数学二不考第九章多元函数微分法及其应用(时间1周,每天2-3小时)9.1多元函数的基本概念(二元函数的极限、连续性、有界性与最大值最小值定理、介值定理)习题9—1:5,6,7,81.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.9.2重点偏导数(偏导数的概念,二阶偏导数的求解),习题9—2:1,2,3,4,6,7,8,99.3重点全微分(全微分的定义,可微分的必要条件和充分条件).习题9—3:1,2,3,5注:全微分在近似计算中的应用9.4重点多元复合函数的求导法则(多元复合函数求导,全微分形式的不变性)习题9—4:1—129.5重点隐函数的求导公式(隐函数存在的3个定理)习题9—5:1—109.8重点多元函数的极值及其求法(多元函数极值与最值的概念,二元函数极值存在的必要条件和充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值)习题9—8:1—12总复习题九:1.3.4.5.6.8.9.10.11.12.注:9.9与9.10不用看第十章重积分(时间1周,每天2-3小时)10.1二重积分的概念与性质(二重积分的定义及6个性质),习题10-1:1,4,51.了解二重积分的概念与基本性质2.掌握二重积分的计算方法(直角坐标、极坐标).10.2重点二重积分的计算法(会利用直角坐标计算二重积分,会利用极坐标计算二重积分),习题10-2:1,2,4,6,7,8,11,12,13,14,15总复习题十:2.3.4.5.6.第十一章曲线积分与曲面积分注:本章数学二不考第十二章无穷级数注:本章数学二不考