第二章《分子结构与性质》什么是化学键?什么是离子键?什么是共价键?化学键:分子中相邻原子之间强烈的相互作用。离子键:阴、阳离子之间通过静电作用形成的化学键。共价键:原子间通过共用电子对形成的化学键。一、共价键1、共价键具有饱和性按照共价键的共用电子对理论,一个原子有几个未成对电子,便可和几个自旋相反的电子配对成键,这就共价键的“饱和性”。H原子、Cl原子都只有一个未成对电子,因而只能形成H2、HCl、Cl2分子,不能形成H3、H2Cl、Cl3分子电子云在两个原子核间重叠,意味着电子出现在核间的概率增大,电子带负电,因而可以形象的说,核间电子好比在核间架起一座带负电的桥梁,把带正电的两个原子核“黏结”在一起了。2、共价键的形成小结项键目型σ键π键成键方向电子云形状牢固程度成键判断规律沿轴方向“头碰头”平行方向“肩并肩”轴对称镜像对称强度大,不易断裂强度较小,易断裂共价单键是σ键,共价双键中一个是σ键,另一个是π键,共价三键中一个是σ键,另两个为π键。乙烷、乙烯和乙炔分子中的共价键分别有几个σ键和几个π键组成?乙烷分子中由7个σ键组成;乙烯分子中由5个σ键和1个π键组成;乙烯分子中由3个σ键和2个π键组成。1、下列说法正确的是A、含有共价键的化合物一定是共价化合物B、分子中只有共价键的化合物一定是共价化合物C、由共价键形成的分子一定是共价化合物D、只有非金属原子间才能形成共价键2、氮分子中的化学键是A、3个σ键B、1个σ键,2个π键C、个π键D、个σ键,1个π键BB3、下列说法中正确的是A、p轨道之间以“肩并肩”重叠可形成σ键B、p轨道之间以“头对头”重叠可形成π键C、s和p轨道以“头对头”重叠可形成σ键D、共价键是两个原子轨道以“头对头”重叠形成的C4、在氯化氢分子中,形成共价键的原子轨道是A、氯原子的2p轨道和氢原子的1s轨道B、氯原子的2p轨道和氢原子的2p轨道C、氯原子的3p轨道和氢原子的1s轨道D、氯原子的3p轨道和氢原子的3p轨道CC2H2CH2OCOCl2NH3P4CH4CH3CH2OHCH3COOHC6H6C8H8CH3OHC60C20C40C70写出CO2、H2O、NH3、CH2O、CH4等分子的电子式、结构式及分子的空间构型:分子CO2H2ONH3CH2OCH4电子式结构式分子的空间构型OCO:::::::::::HOH::::HNH:H:::HCH:HHO=C=OH-O-HH-N-H-HH-C-H=OH-C-H--HH直线形倒V形三角锥形平面三角形正四面体HH..C....O......对ABn型分子,B围绕A成键,则A为中心原子,n值为中心原子结合的原子数。1、内容:中心原子价电子层电子对(包括___电子对和的孤对电子对)的互相作用,使分子的几何构型总是采取电子对相互的那种构型,即分子尽可能采取对称的空间构型。(VSEPR模型)成键未成键排斥排斥最小二、价层电子对互斥模型只有一种角度,120°。只有一种角度,109°28′。5对电子三角双锥3对电子正三角形••A••••4对电子正四面体A••••••••电子对数和电子对空间构型的关系电子对相互排斥,在空间达到平衡取向。2对电子直线形A6对电子正八面体课堂练习:1、多原子分子的立体结构有多种,三原子分子的立体结构有___形和形,大多数四原子分子采取形和___形两种立体结构,五原子分子的立体结构中最常见的是形。2、下列分子或离子中,不含有孤对电子的是___A、H2O、B、H3O+、C、NH3、D、NH4+3、下列分子①BCl3、②CCl4、③H2S、④CS2中,其键角由小到大的顺序为___4、以下分子或离子的结构为正四面体,且键角为109°28′的是____①CH4②NH4+③CH3Cl④P4⑤SO42-A、①②③B、①②④C、①②⑤D、①④⑤5、用价层电子对互斥模型判断SO3的分子构型___A、正四面体形B、V形C、三角锥形D、平面三角形直线V平面三角三角锥③②①④DCD正四面体一、键的极性和分子的极性极性键与非极性键(1)何谓共价键?(2)何谓电负性?(3)分别以H2、HCl为例,探究电负性对共价键有何影响?练习与巩固1.含有非极性键的离子化合物是()A.NaOHB.Na2O2C.NaClD.NH4Cl2.下列元素间形成的共价键中,极性最强的是()A.F―FB.H―FC.H―ClD.H―O总结:键的极性与分子极性的关系A、都是由非极性键构成的分子一定是非极性分子。B、极性键结合形成的双原子分子一定为极性分子。C、极性键结合形成的多原子分子,可能为非极性分子,也可能为极性分子。D、多原子分子的极性,应有键的极性和分子的空间构型共同来决定。对范德华力的理解①分子间作用力比化学键弱得多,它主要影响物质的熔点、沸点、溶解性等物理性质,而化学键主要影响物质的化学性质。②分子间作用力只存在于由分子构成的物质之间,离子化合物、原子化合物、金属之间不存在范德华力。③分子间作用力范围很小,即分子充分接近时才有相互间的作用力。④分子的大小、分子的极性对范德华力有显著影响。结构相似的分子,相对分子质量越大范德华力越大;分子的极性越大,范德华力也越大。三、氢键及其对物质性质的影响氢键的本质氢原子与电负性大的原子X以共价键结合时,H原子还能够跟另外一个电负性大的原子Y之间产生静电引力的作用,成为氢键,表示为:X-H…Y(X、Y为N、O、F)。氢键的特征氢键既有方向性(X-H…Y尽可能在同一条直线上),又有饱和性(X-H只能和一个Y原子结合)。氢键的大小,介于化学键与范德华力之间,不属于化学键。但也有键长、键能。氢键的形成对化合物性质的影响(1)对沸点和熔点的影响分子间氢键使物质熔、沸点升高。而分子内氢键使物质的沸点和熔点降低。(2)对溶解度的影响极性溶剂里,溶质分子与溶剂分子间的氢键使溶质溶解度增大,而当溶质分子形成分子间氢键使恰好相反。相似相溶原理“凡是分子结构相似的物质,都是易于互相溶解的。”这是从大量事实总结出来的一条规律,叫做相似相溶原理。由于分子的极性是否相似对溶解性影响很大,所以,相似相溶原理又可以理解为“极性分子易溶于极性溶剂中,非极性分子易溶于非极性溶剂中。”例如:CCl4是非极性分子,作为溶剂它就是非极性溶剂;而H20是极性分子,所以它是极性溶剂。Br2、I2等都是非极性分子,所以易溶于CCl4、苯等非极性溶剂,而在水这一极性溶剂中溶解度就很小。相反,盐类(NaCl等)这些离子化合物可看做是极性最强的,它们就易溶于水而不溶于CCl4、苯等非极性溶剂。HCl、H2S04是强极性分手,易溶于水而难溶于CCl4。利用相似相溶原理,有助于我们判断物质在不同溶剂中的溶解性。结论:影响溶解度的因素(1)内因:相似相溶原理(2)外因:影响固体溶解度的主要因素是温度;影响气体溶解度的主要因素是温度和压强。(3)其他因素:A)如果溶质与溶剂之间能形成氢键,则溶解度增大,且氢键越强,溶解性越好。如:NH3。B)溶质与水发生反应时可增大其溶解度,如:SO2。五、手性例如:乳酸分子CH3CHOHCOOH有以下两种异构体:图片六、无机含氧酸分子的酸性把含氧酸的化学式写成(HO)mROn,就能根据n值判断常见含氧酸的强弱。n=0,极弱酸,如硼酸(H3BO3)。n=1,弱酸,如亚硫酸(H2SO3)。n=2,强酸,如硫酸(H2SO4)、硝酸(HNO3)。n=3,极强酸,如高氯酸(HClO4)。无机含氧酸强度的变化本质含氧酸的强度取决于中心原子的电负性、原子半径、氧化数。当中心原子的电负性大、原子半径小、氧化数高时,使O-H键减弱,酸性增强。H4SiO4H3PO4H2SO4HClO4HClOHClO3HClO4HClOHBrOHIO练习:比较下列含氧酸酸性的强弱无氧酸的酸性强弱变化规律若用通式R-H表示无氧酸,则其酸性的强弱主要取决于R的电负性。如果R原子电负性大,对氢原子的束缚力强,则其酸性弱。如果R原子的电负性小,对氢原子的束缚力弱,则其酸性就强。练习:比较下列物质的酸性强弱,有何结论?(1)CH4、NH3、H2O、HF(2)HF、HCl、HBr、HI