高考数学一轮复习_29函数的应用(师)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1§2.9函数的应用考试如何考1.综合考查函数的性质;2.考查一次函数、二次函数、分段函数及基本初等函数的建模问题;3.考查函数的最值.复习备考要这样做1.讨论函数的性质一定要在定义域内;2.充分搜集、应用题目信息,正确建立函数模型;3.注重函数与不等式、数列、导数等知识的综合.1.几类函数模型及其增长差异(1)几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a、b为常数,a≠0)反比例函数模型f(x)=kx+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=bax+c(a,b,c为常数,b≠0,a0且a≠1)对数函数模型f(x)=blogax+c(a,b,c为常数,b≠0,a0且a≠1)幂函数模型f(x)=axn+b(a,b为常数,a≠0)(2)三种函数模型的性质函数性质y=ax(a1)y=logax(a1)y=xn(n0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当xx0时,有logaxxnax2.解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;2(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:1.要注意实际问题的自变量的取值范围,合理确定函数的定义域.2.解决实际应用问题的一般步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质.(2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题.(3)解模:用数学知识和方法解决转化出的数学问题.(4)还原:回到题目本身,检验结果的实际意义,给出结论.1.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数:T(t)=t3-3t+60,t=0表示中午12∶00,其后t取正值,则下午3时的温度为________.答案78℃解析T(3)=33-3×3+60=78(℃).2.某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.答案2500解析L(Q)=40Q-120Q2-10Q-2000=-120Q2+30Q-2000=-120(Q-300)2+2500。当Q=300时,L(Q)的最大值为2500万元.3.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M02-t30,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率...是-10ln2(太贝克/年),则M(60)等于()A.5太贝克B.75ln2太贝克C.150ln2太贝克D.150太贝克答案D解析∵M′(t)=-130M02-t30·ln2,∴M′(30)=-130×12M0ln2=-10ln2,∴M0=600.∴M(t)=600×2-t30,∴M(60)=600×2-2=150(太贝克).4.某企业第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则以下结论正确3的是()A.x22%B.x22%C.x=22%D.x的大小由第一年的产量确定答案B解析设第一年的产量为a,则a(1+x)2=a(1+44%),∴x=20%.5.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站()A.5千米处B.4千米处C.3千米处D.2千米处答A解:由题意得,y1=k1x,y2=k2x,其中x0,当x=10时,代入两项费用y1,y2分别是2万元和8万元,可得k1=20,k2=45,y1+y2=20x+45x≥220x·45x=8,当且仅当20x=45x,即x=5时取等号,故选A.题型一二次函数模型例1某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=x25-48x+8000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?思维启迪:(1)根据函数模型,建立函数解析式.(2)求函数最值.解(1)每吨平均成本为yx(万元).则yx=x5+8000x-48≥2x5·8000x-48=32,当且仅当x5=8000x,即x=200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元.(2)设可获得总利润为R(x)万元,则R(x)=40x-y=40x-x25+48x-8000=-x25+88x-8000=-15(x-220)2+1680(0≤x≤210).∵R(x)在[0,210]上是增函数,∴x=210时,R(x)有最大值为-15(210-220)2+1680=1660.∴年产量为210吨时,可获得最大利润1660万元.探究提高二次函数是常用的函数模型,建立二次函数模型可以求出函数的值域或最值.解决实际中的优化问题时,一定要分析自变量的取值范围.利用配方法求最值时,一定要注意对称轴与给定区间的关系:若对称轴在给定的区间内,可在对称轴处取一最值,在离对称轴较远的端点处取另一最值;若对称轴不在给定的区间内,最值都在区间的端点处取得.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3000+20x-0.1x2(0x240,4x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台答案C解析设利润为f(x)万元,则f(x)=25x-(3000+20x-0.1x2)=0.1x2+5x-3000(0x240,x∈N*).令f(x)≥0,得x≥150,∴生产者不亏本时的最低产量是150台.题型二指数函数模型例2诺贝尔奖发放方式为每年一发,把资金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔奖金发放后基金总额约为19800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推).(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.03129=1.32)思维启迪:从所给信息中找出关键词,增长率问题可以建立指数函数模型.解(1)由题意知,f(2)=f(1)(1+6.24%)-12f(1)·6.24%=f(1)(1+3.12%),f(3)=f(2)(1+6.24%)-12f(2)·6.24%=f(2)(1+3.12%)=f(1)(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为16·12f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.探究提高此类增长率问题,在实际问题中常可以用指数函数模型y=N(1+p)x(其中N是基础数,p为增长率,x为时间)和幂函数模型y=a(1+x)n(其中a为基础数,x为增长率,n为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m·2t+21-t(t≥0,并且m0).(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.解(1)若m=2,则θ=2·2t+21-t=22t+12t,当θ=5时,2t+12t=52,令2t=x≥1,则x+1x=52,即2x2-5x+2=0,解得x=2或x=12(舍去),此时t=1.所以经过1分钟,物体的温度为5摄氏度.(2)物体的温度总不低于2摄氏度,即θ≥2恒成立,亦m·2t+22t≥2恒成立,亦即m≥212t-122t恒成立.5令12t=x,则0x≤1,∴m≥2(x-x2),由于x-x2≤14,∴m≥12.因此,当物体的温度总不低于2摄氏度时,m的取值范围是12,+∞.题型三分段函数模型例3为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=13x3-80x2+5040x,x∈[120,,12x2-200x+80000,x∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?思维启迪:题目中月处理成本与月处理量的关系为分段函数关系,项目获利和月处理量的关系也是分段函数关系.解(1)当x∈[200,300]时,设该项目获利为S,则S=200x-12x2-200x+80000=-12x2+400x-80000=-12(x-400)2,所以当x∈[200,300]时,S0,因此该单位不会获利.当x=300时,S取得最大值-5000,所以国家每月至少补贴5000元才能使该项目不亏损.(2)由题意,可知二氧化碳的每吨处理成本为yx=13x2-80x+5040,x∈[120,12x+80000x-200,x∈[144,500].①当x∈[120,144)时,yx=13x2-80x+5040=13(x-120)2+240,所以当x=120时,yx取得最小值240.②当x∈[144,500]时,yx=12x+80000x-200≥212x×80000x-200=200,当且仅当12x=80000x,即x=400时,yx取得最小值200.因为200240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低.探究提高本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)6为f(x)=cx,xA,cA,x≥A(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是()A.75,25B.75,16C.60,25D.60,16答案D解析由函数解析式可以看出,组装第A件产品所需时间为cA=15,故组装第4件产品所需时间为c4=30,解得c=60,将c=60代入cA=15

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功