隶属函数确定问题一、隶属函数的确定原则1、表示隶属度函数的模糊集合必须是凸模糊集合;即:在一定范围内或者一定条件下,模糊概念的隶属度具有一定的稳定性;从最大的隶属度函点出发向两边延伸时,其隶属度是单调递减的,而不许有波浪性,呈单峰;一般用三角形和梯形作为隶属度函数曲线。2、变量所取隶属度函数通常是对称和平衡的模糊变量的标值选择一般取3-9个为宜,通常取奇数(平衡),在“零”“适中”等集合的两边语言值通常取对称。3、隶属度函数要避免不恰当的重复在相同的论域上使用的具有语意顺序的若干标称的模糊集合,应该合力排序。4、论语中的每个点应该至少属于一个隶属度函数的区域,同时它一般应该属于之多不超过两个隶属度函数的区域。5、对于同一输入,没有两个隶属度函数会同时有最大隶属度6、对两个隶属度函数重叠时,重叠部分对于两个隶属度函数的最大隶属度不应该有交叉。二、隶属度函数确定的方法1、模糊统计法模糊统计法的基本思想是对论域U上的一个确定元素v是否属于论域上的一个可变的清晰集的判断。(清晰集、模糊集)模糊统计法计算步骤:Step1确定论域Step2形成调查表Step3统计成频数分布表Step4建立隶属函数Step5隶属度(由频数分布表或者隶属函数可得)所谓模糊统计实验包含以下四个要素:假设做n次模糊统计试验,则可计算出:实际上,当n不断增大时,隶属频率趋于稳定,其频率的稳定值称为0x对A的隶属度,即2、例证法例证法由已知的有限个隶属度函数的值,来估计论域U上的模糊子集A的隶属函数。3、专家经验法是根据专家的实际经验给出模糊信息的处理算式或者相应的权系数值隶属函数的一种方法。4、二元对比排序法5、群体决策法6、指派方法(待定来自算法大全第22章模糊数学模型)指派方法是一种主观的方法,它主要依据人们的实践经验来确定某些模糊集隶属函数的一种方法。如果模糊集定义在实数域R上,则模糊集的隶属函数称为模糊分布。所谓指派方法就是根据问题的性质主观地选用某些形式地模糊分布,再根据实际测量数据确定其中所包含地参数,常用的模糊分布如表1所示。实际中,根据问题对研究对象的描述来选择适当的模糊分布:①偏小型模糊分布一般适合于描述像“小,少,浅,淡,冷,疏,青年”等偏小的程度的模糊现象。②偏大型模糊分布一般适合于描述像“大,多,深,浓,热,密,老年”等偏大的程度的模糊现象。③中间型模糊分布一般适合于描述像“中,适中,不太多,不太少,不太深,不太浓,暖和,中年”等处于中间状态的模糊现象。但是,表1给出的隶属函数都是近似的,应用时需要对实际问题进行分析,逐步修改进行完善,最后得到近似程度更好的隶属函数。三、隶属度函数和图形1、隶属度函数隶属度函数大概主要有以下三种:高斯函数:S函数:II函数:2、隶属度函数的形状大概有以下三种:1)左大右小的偏小型下降函数(Z函数)2)左小右大的偏大型上升函数(S函数)3)对称型凸函数(II函数)图Z函数图S函数图II函数