鼓式制动器参考资料

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

目录一、设计任务书………………………………………………..2二、制动方案的拟定………………………………………….1三、各种形式制动器现状比较……………………………….5四、整个传动系统运动和动力参数的选择与计算…………..6五、传动零件的设计计算……………………………………12六、总体布局…………………………………………………13七、总结………………………………………………………17八、参考资料………………………………………………….17一、设计任务书题目:已知条件:(1)假设地面的附着系数足够大;(2)车重2.2t(3)前后重量分配:40%,60%(4)蹄、盘正压力的分布状态可由自行假设(5)轮胎型号195/80R14(6)制动初速度100km/h(7)最大急刹车距离为18m(8)工作环境:设定为高温状态(9)制动摩擦系数取值范围:0.25≤f≤0.55(10制动器具体结构可参考汽车实验室相关制动器结构,也自行设计。前后轮重量分配示意图二、制动方案的拟定汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置;牵引汽车应有自动制动装置。任何一套制动装置均由制动器和制动驱动机构两部分组成。制动器有鼓式与盘式之分。行车制动是用脚踩下制动踏板操纵车轮制动器来制动全部车轮,而驻车制动则多采用手制动杆操纵,且具有专门的中央制动器或利用车轮制动器进行制动。中央制动器位于变速器之后的传动系中,用于制动变速器第二轴或传动轴。行车制动和驻车制动这两套制动装置必须具有独立的制动驱动机构。行车制动装置的驱动机构,分液压和气压两种型式。用液压传递操纵力时还应有制动主缸和制动轮缸以及管路;用气压操纵时还应有空气压缩机、气路管道、贮气筒、控制阀和制动气室等。过去,大多数汽车的驻车制动和应急制动都使用中央制动器,其优点是制动位于主减速器之前的变速器第二轴或传动轴的制动力矩较小,容易满足操纵手力小的要求。但在用作应急制动时,往往使传动轴超载。现代汽车由于车速提高,对应急制动的可靠性要求更严,因此,在中、高级轿车和部分总质量在1.5t以下的载货汽车上,多在后轮制动器上附加手操纵的机械式驱动机构,使之兼起驻车制动和应急制动的作用,从而取消了中央制动器。汽车制动系设计的程序1.设计的前提条件(1)汽车的参数汽车的满载质量、自重以及满载和空载时的前、后轴负荷及重心高度,还有轴和轮胎尺寸。(2)法规适合性决定制动系统、构造和参数的最低要求是适合指定的法规。根据上述两项最基本的前提条件,再加上市场的需求、使用条件、竞争性及本司现生产情况确定设计方向。2.制动操纵方式和制动系统的确定(1)研究、确定制动控制采用气压方式还是液压(真空助力、真空增压或油气混合)方式(2)研究、确定制动系统的构成①行车制动系统所采用双回路或多回路,应由那些部件构成,这些部件是现有的还是需要选购或新设计,设计制动系统示意图。②驻车制动采用中央制动器还是作用后轮(机械操纵还是弹簧制动缸)。③应急制动的操纵是与行车制动或驻车制动结合,还是独立操纵。④是否需要有辅助制动,采用排气制动、液力缓速器或电涡流缓速器。(3)汽车必需制动力及其前后分配的确定前提条件一经确定,与前项的系统的研究、确定的同时,研究汽车必需的制动力并把它们适当地分配到前后轴上,确定每个车轮制动器必需的制动力。此外,还应研究、确定汽车必需的驻车制动力和应急制动力。(4)确定制动器制动力、摩擦片寿命及构造、参数制动器必需制动力求出后,考虑摩擦片寿命和由轮胎尺寸等所限制的空间,选定制动器的型式、构造和参数,绘制布置图,进行制动力制动力矩计算、摩擦磨损计算。(5)制动器零件设计零件设计、材料、强度、耐久性及装配性等的研究确定,进行工作图设计。(6)制动操纵系统设计制动系操纵部件(阀类、加力器、制动气室等)的研究、选定或设计,操纵机构设计;注意性能(操纵力和行程、制动系统静特性和动特性)、强度、耐久性及车辆装配性等。(7)管路设计管路布置、设计。三、各种形式制动器现状比较汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上,例如变速器第二轴的后端或传动轴的前端。摩擦式制动器按其旋转元件的形状又可分为鼓式和盘式两大类。鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已很少采用。由于外束型鼓式制动器通常简称为带式制动器,而且在汽车上已很少采用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式结构。盘式制动器的旋转元件是一个垂直安放且以两侧表面为工作面的制动盘,其固定摩擦元件一般是位于制动盘两侧并带有摩擦片的制动块。制动时,当制动盘被两侧的制动块夹紧时,摩擦表面便产生作用与制动盘上的摩擦力矩。盘式制动器常用作轿车的车轮制动器,也可用作各种汽车的中央制动器。按摩擦副中的固定摩擦元件的结构来分析,盘式制动器可分为钳盘式和全盘式制动器两大类,本次课程设计为定钳盘式制动器。定钳盘式制动器的制动钳固定安装在轿车上,既不能旋转,也不能沿制动盘轴线方向移动,因而其中必须在制动盘两侧都装设制动快触动装置(例如相当于制动轮缸的油缸),以便分别将两侧的制动快压向制动盘。四、整个传动系统运动和动力参数的选择与计算鼓式制动器主要参数的确定1.制动鼓内径D输入离F0一定时,制动鼓内径越大,制动力矩越大,且散热能力越强。但D的增大(图1-1)受轮辋内径的限制。制动鼓与轮辋之间应保持足够大的间隙,通常要求该间隙不小于20mm,否则不仅制动鼓散热条件差,而且轮辋受热后可能粘住内胎或烤坏气门嘴。制动鼓应有足够的壁厚,用来保证有较大的刚度和热容量,以减少制动时的升温,制动鼓的直径小,刚度就大,并有利于保证制动鼓的加工精度。制动鼓的直径与轮辋直径之比D/Dr的范围如下:乘用车D/Dr=0.64~0.74商用车D/Dr=0.70~0.83制动鼓内径尺寸应参照专业标准QC/T309—1999《制动鼓工作直径及制动蹄片宽度尺寸系列》选取。本次规定的轮胎型号为195/80R14,轮辋直径为355.6mm,所以根据QC/T309—1999《制动鼓工作直径及制动蹄片宽度尺寸系列》选取制动鼓直径为125mm蹄片宽度B为60mm。2.摩擦衬片宽度b和包角β摩擦衬片宽度尺寸b的选取对摩擦衬片的使用寿命有影响。衬片的宽度尺寸取窄些,则磨损速度快,衬片寿命短;若衬片宽度尺寸取宽些,则质量大不易加工,且增加了成本。制动鼓半径R确定后,衬片的摩擦面积为Ap=Rβb。制动器各蹄衬片总的摩擦面积ΣAp越大,制动时所受单位面积的正压力和能量负荷越小,从而磨损特性越好。根据国外统计资料分析,单个车轮鼓式制动器的衬片面积随汽车总质量的增大而增大,具体数据见表1-1。表1-1衬片摩擦面积汽车类别汽车总质量ma/t单个制动器总的衬片摩擦面积Ap/cm2乘用车0.9~1.51.5~2.51.0~0.51.5~2.52.5~3.53.5~7.07.0~12.0100~200200~300120~200150~250(多为150~200)250~400300~650550~1000商用车12.0~17.0600~1500(多为600~1200)试验表明,摩擦衬片包角β=90°~100°时,磨损最小,制动鼓温度最低,且制动效能最高。β角减小虽然有利于散热,但单位压力过高将加速磨损。实际上包角两端处的单位压力最小,因此过分延伸衬片两端以加大包角对减小压力的作用不大,而且将使制动作用不平顺,容易使制动器发生自锁。因此包角一般不宜大于120°。考虑到磨损以及合适的摩擦片面积选用的摩擦衬片的包角β=90°;摩擦衬片宽度为60mm。3.摩擦衬片起始角β0一般将衬片不知在制动蹄的中央,即令β0=90°-β/2。有时为了适应单位压力的分布情况,将衬片相对于最大压力点对称布置,以改善磨损均匀性与制动效能。因为β=90°所以β0=45°。4.制动器中心到张开力F0作用线的距离e在保证轮缸或制动凸轮能够布置于制动鼓内的条件下,应使距离e(图1-1)尽可能增大以提高制动效能。初步设计时可暂定e=0.8R左右。5.制动蹄支撑点位置坐标a和c应在保证两蹄支撑端毛面不致相互干涉的条件下,使a尽可能大而c尽可能小(图1-1)。初步设计时也可暂定a=0.8R左右。根据设计要求,设定e=0.8R,a=0.8R,c=0.3R。鼓式制动器的设计计算根据此次设计要求,需要设计的是一个车重2.2t,后重量分配为40%、60%轮胎型号为195/80R14,当时速为100km/h时,最大紧急刹车距离为18m。所以根据公式2as=v2-u2算得汽车的最大加速度为21.5m/s2。而其中一个前轮分配到的重量为440kg(不计人的重量)。所以要想制动,根据F=ma摩擦衬片施加在制动鼓上的摩擦力为9460N。而摩擦因数f为0.35,所以施加在摩擦片上的法向合力为27028N。由表1-1得,选取A=200cm2设P=2XP=xxxdxpdx002又P.S=NX2.S=NX=SN/=11.62pa所以Pmax=2X=23.24paNmax=Pmax.S=4648N因为摩擦片压强范围为40~90Pa取50PaPmax1=50paNmax1=Pmax1.S=10000N1maxmaxNN摩擦片可用衬片磨损特性的计算摩擦衬片(衬块)的磨损,与摩擦副的材质、表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。汽车的制动过程是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。此时由于在短时间内热量来不及逸散到大气中,致使制动器温度升高。此即所谓制动器的能量负荷。能量负荷愈大,则衬片(衬块)的磨损愈严重。制动器的能量负荷常以其比能量耗散率作为评价指标。比能量耗散率又称为单位功负荷或能量负荷,它表示单位摩擦面积在单位时间内耗散的能量,其单位为W/mm2。双轴汽车的单个前轮制动器和单个后轮制动器的比能量耗散率分别为1222112)(21tAvvmea)1(2)(21222212tAvvmea(1-13)jvvt21式中——汽车回转质量换算系数;am——汽车总质量;1v,2v——汽车制动初速度与终速度,m/s;计算时轿车取1001vkm/h(27.8m/s);总质量3.5t以下的货车取1v=80km/h(22.2m/s);总质量3.5t以上的货车取1v=65km/h(18m/s);j——制动减速度,m/s2,计算时取j=0.6g;t——制动时间,s;Al,A2——前、后制动器衬片(衬块)的摩擦面积;——制动力分配系数。在紧急制动到02v时,并可近似地认为1,则有1211221tAv

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功