1-1作图表示出立方晶系(123)、(0-1-2)、(421)等晶面和[-102]、[-211]、[346]等晶向。答:1-2立方晶系的{111}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。答:{111}晶面共包括(111)、(-111)、(1-11)、(11-1)四个晶面,在一个立方晶系中画出上述四个晶面。1-3某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠c,c=2/3a。今有一晶面在X、Y、Z坐标轴上的结局分别为5个原子间距、2个原子间距和3个原子间距,求该晶面的晶面指数。答:由题述可得:X方向的截距为5a,Y方向的截距为2a,Z方向截距为3c=3×2a/3=2a。取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(255)1-4体心立方晶格的晶格常数为a,试求出(100)、(110)、(111)晶面的面间距大小,并指出面间距最大的晶面。答:H(100)==a/2H(110)==√2a/2H(111)==√3a/6面间距最大的晶面为(110)1-5面心立方晶格的晶格常数为a,试求出(100)、(110)、(111)晶面的面间距大小,并指出面间距最大的晶面。答:H(100)==a/2H(110)==√2a/4H(111)==√3a/3面间距最大的晶面为(111)1-13试计算出体心立方晶格{100}、{110}、{111}等晶面的原子密度和100、110、111等晶向的原子密度,并指出其最密晶面和最密晶向。(提示:晶面的原子密度为单位面积上的原子数,晶向的原子密度为单位长度上的原子数)解:令晶格常数为a则{100}等晶面的面积S=a2,{100}等晶面的原子数N=4×1/4=1,所以:ρ{100}=N/S=1/a2则{110}等晶面的面积S=√2a2,{110}等晶面的原子数N=4×1/4+1=2,所以:ρ{110}=N/S=√2/a2则{111}等晶面的面积S=(√3/2)a2,{111}等晶面的原子数N=3×1/6=1/2,所以:ρ{111}=N/S=√3/3a2则100等晶向的长度L=a,100等晶向的原子数N=2×1/2=1所以:ρ100=N/L=1/a则110等晶向的长度L=√2a,110等晶向的原子数N=2×1/2=1所以:ρ110=N/L=1/√2a则111等晶向的长度L=√3a,111等晶向的原子数N=2×1/2+1=2所以:ρ111=N/L=2/√3a最密晶面为:{110}等晶面,最密晶向:1113-4何谓成分过冷?成分过冷对固溶体结晶时晶体长大方式和铸锭组织有何影响?答:成分过冷:固溶体合金在结晶时,由于选分结晶现象,溶质组元必然会重新分布,导致在固液界面前沿形成溶质的浓度梯度,造成固液界面前沿一定范围内的液相其实际温度低于平衡结晶温度,出现了一个由于成分差别引起的过冷区域。过冷度为平衡结晶温度与实际温度之差,这个过冷度是由成分变化引起的,所以称之为成分过冷。成分过冷对固溶体结晶时晶体长大方式和铸锭组织的影响:在固液界面前沿无成分过冷区域时,晶体以平面长大方式生长,长大速度完全受散热条件控制,最后形成平面状的晶粒组织;在过冷区域比较小时,固液界面上的偶然突出部分,可伸入过冷区长大,突出部分约为0.1-1mm,晶体生长是稳定的凹凸不平界面以恒速向液体中推进。这种凹凸不平的界面通常称之为胞状界面,具有胞状界面的晶粒组织称为胞状组织,因为它的显微形态很像蜂窝,所以又称为蜂窝组织,它的横截面典型形态呈规则的六变形;在过冷区域较大时,则固溶体合金的结晶条件与纯金属在负温度梯度下的结晶条件相似,在固液界面上的突出部分可以向液相中突出相当大的距离,在纵向生长的同时,又从其侧面产生突出分枝,最终发展成树枝晶组织3-6铋(熔点为271.5℃)和锑(熔点为630.7℃)在液态和固态时均能彼此无限互溶,WBi=50%的合金在520℃时开始凝固出成分为WSb=87%的固相。WBi=80%的合金在520℃时开始凝固出成分为WSb=64%的固相。根据上述条件,要求:1)绘出Bi-Sb相图,并标出各线和各相区的美称。2)从相图上确定WSb=40%合金的开始结晶温度和结晶终了温度,并求出它在400℃时的平衡相成分及其含量。答:1)相图和相区2)T开与T终在相图中已标出,WSb=40%合金在400℃时的平衡相成分及其含量可根据相图和杠杆定律计算得出:根据相图可以看出:在400℃相平衡时,L1相为WBi=80%的液相Bi-Sb合金,α相为WBi=50%的固相相Bi-Sb合金。根据杠杆定律:L1相的含量={(0.6-0.5)/(0.8-0.5)}×100%≈33.3%α相的含量=1-33.3%≈66.7%3-7根据下列试验数据绘出概略的二元共晶相图:组员A的熔点为1000℃,组员B的熔点为700℃,WB=25%的合金在500℃结晶完毕,并由220/3%的先共晶α相与80/3%的(α+β)共晶体所组成;WB=50%的合金在500℃结晶完毕,并由40%的先共晶α相与60%的(α+β)共晶体所组成,而此合金中α相的总量为50%。答:3-8组员A的熔点为1000℃,组员B的熔点为700℃,在800℃存在包晶反应:α(WB=5%)+L(WB=50%)≒β(WB=30%);在600℃存在共晶反应:L(WB=80%)≒β(WB=60%)+γ(WB=95%);在400℃存在共析反应:β(WB=50%)≒α(WB=2%)+γ(WB=97%).根据这些数据画出相图。答:4-1分析Wc=0.2%,Wc=0.6%,Wc=1.2%,的铁碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图说明各阶段的组织,并分别计算室温下的相组成物及组织组成物的含量。答:1、Wc=0.2%的转变过程及相组成物和组织组成物含量计算转变过程:1)液态合金冷却至液相线处,从液态合金中按匀晶转变析出δ铁素体,L≒δ,组织为液相+δ铁素体2)液态合金冷却至包晶温点(1495℃),液相合金和δ铁素体发生包晶转变,形成奥氏体γ,L+δ≒γ,由于Wc=0.2%高于包晶点0.17%,因此组织为奥氏体加部分液相。3)继续冷却,部分液相发生匀晶转变析出奥氏体γ,直至消耗完所有液相,全部转变为奥氏体组织。4)当合金冷却至与铁素体先共析线相交时,从奥氏体中析出先共析铁素体α,组织为奥氏体+先共析铁素体5)当合金冷却至共析温度时,奥氏体碳含量沿铁素体先共析线变化至共析点碳含量,发生共析转变γ≒α+Fe3C,此时组织为先共析铁素体+珠光体6)继续冷却,先共析铁素体和珠光体中的铁素体都将析出三次渗碳体,但数量很少,可忽略不计。所以室温下的组织为:先共析铁素体+珠光体。组织含量计算:组织含量计算:Wα(先)=(0.77-0.2)/(0.77-0.0218)×100%≈76.2%,Wp=1-Wα(先)≈23.8%相含量计算:Wα=(6.69-0.2)/(6.69-0.0218)×100%≈97.3%,WFe3C=1-Wα≈2.7%2、Wc=0.6%的转变过程及相组成物和组织组成物含量计算转变过程:1)液态合金冷却至液相线处,从液态合金处按匀晶转变析出奥氏体,L≒γ,组织为液相+奥氏体。2)继续冷却,直至消耗完所有液相,全部转变为奥氏体组织。4)当合金冷却至与铁素体先共析线相交时,从奥氏体中析出先共析铁素体α,组织为奥氏体+先共析铁素体5)当合金冷却至共析温度(727℃)时,奥氏体碳含量沿铁素体先共析线变化至共析点,发生共析转变γ≒α+Fe3C,此时组织为先共析铁素体+珠光体6)珠光体中的铁素体都将析出三次渗碳体,但数量很少,可忽略不计。所以室温下的组织为:先共析二次渗碳体+珠光体组织含量计算:组织含量计算:Wα(先))=(0.77-0.6)/(0.77-0.0218)×100%≈22.7%,Wp=1-Wα(先)≈77.3%相含量计算:Wα=(6.69-0.6)/(6.69-0.0218)×100%≈91.3%,WFe3C=1-Wα≈8.7%3、Wc=1.2%的转变过程及相组成物和组织组成物含量计算转变过程:1)液态合金冷却至液相线处,从液态合金处按匀晶转变析出奥氏体,L≒γ,组织为液相+奥氏体。2)继续冷却,直至消耗完所有液相,全部转变为奥氏体组织。3)当合金冷却至与渗碳体先共析线(碳在奥氏体中的溶解度曲线)相交时,从奥氏体中析出先共析二次渗碳体,组织为奥氏体+先共析二次渗碳体4)当温度冷却至共析温度(727℃)时,奥氏体碳含量沿溶解度曲线变化至共析点碳含量,发生共析转变γ≒α+Fe3C,组织为珠光体+先共析二次渗碳体5)珠光体中的铁素体都将析出三次渗碳体,但数量很少,可忽略不计。所以室温下的组织为:先共析二次渗碳体+珠光体组织含量计算:组织含量计算:WFe3C(先)=(1.2-0.77)/(6.69-0.77)×100%≈7.3%,Wp=1-WFe3C(先)≈92.7%相含量计算:Wα=(6.69-1.2)/(6.69-0.0218)×100%≈82.3%,WFe3C=1-Wα≈16.7%4-2分析Wc=3.5%,Wc=4.7%的铁碳合金从液态到室温的平衡结晶过程,画出冷却曲线和组织变化示意图,并计算室温下的组织组成物和相组成物。答:1、Wc=3.5%的转变过程及相组成物和组织组成物含量计算转变过程:1)液态合金冷却至液相线处,从液态合金中按匀晶转变析出奥氏体,L≒γ,组织为液相合金+奥氏体。2)当合金温度冷却至共晶温度(1127℃)时,液相合金中的含碳量变化至共晶点,液相合金发生共晶转变L≒γ+Fe3C,组织为共晶莱氏体Ld+奥氏体。3)温度继续降低,匀晶奥氏体和莱氏体中的奥氏体将析出二次渗碳体。所以组织为:奥氏体+莱氏体+二次渗碳体。4)当温度降低至共析温度(727℃),奥氏体中的碳含量变化值共析点,发生共析转变形成珠光体,γ≒α+Fe3C,组织为珠光体(低温莱氏体L’d)+二次渗碳体。5)继续冷却,珠光体中的铁素体将会析出按此渗碳,但数量很少,可以忽略不计。所以室温下的组织为:珠光体(低温莱氏体L’d)+渗碳体(二次渗碳体+共晶渗碳体)。组织含量计算:组织含量计算:WFe3CⅡ={(2.11-0.77)/(6.69-0.77)}×{(6.69-3.5)/(6.69-2.11)}×100%≈19.2%WFe3C(共)={(4.3-2.11)/(6.69-2.11)}×{(3.5-2.11)/(4.3-2.11)}×100%≈30.6%WL’d=1-WFe3C(共)-WFe3CⅡ=≈50.2%相含量计算:Wα={(6.69-0.77)/(6.69-0.0218)}×WL’d×100%≈44.6%,WFe3C=1-Wα≈55.4%2、Wc=4.7%的转变过程及相组成物和组织组成物含量计算转变过程:1)液态合金冷却至液相线处,从液态合金中按匀晶转变析出粗大的渗碳体,称为一次渗碳体,L≒Fe3CⅠ,组织为液相合金+Fe3CⅠ。2)当合金温度冷却至共晶温度(1127℃)时,液相合金中的含碳量变化至共晶点,液相合金发生共晶转变L≒γ+Fe3C,组织为共晶莱氏体Ld+Fe3CⅠ。3)温度继续降低,共晶莱氏体中的奥氏体将析出二次渗碳体,组织为:莱氏体+一次渗碳体+二次渗碳体。4)当温度降低至共析温度(727℃),共晶莱氏体中奥氏体中的碳含量变化至共析点,发生共析转变形成珠光体,γ≒α+Fe3C,此时组织为:珠光体(低温莱氏体L’d)+一次渗碳体+二次渗碳体。5)继续冷却,珠光体中的铁素体将会析出三次渗碳体,但数量很少,可以忽略不计。所以室温下的组织为:珠光体(低温莱氏体L’d)+渗碳体(一次渗碳体+二次渗碳体+共晶渗碳体)。组织含量计算:组织含量计算:WL’d={(6.69-2.11)/(6.69-0.77)}×{(6.69-4.7)/(6.69-2.11)}×100%≈33.5%WFe3C=1-WL’d≈66.5%相含量计算:Wα={(6.69-0.77)/(6.69-0.