A.将钢件加热到奥氏体化温度并保持一定时间,然后以大于临界冷却速度冷却,以获得非扩散型转变组织,如马氏体、贝氏体和奥氏体等的热处理工艺。淬火温度:又叫淬火加热温度,是指对将进行淬火处理的工件进行加热所达到的最高温度,也是其进行冷却处理时的初始温度,其在临界温度以上。通常亚共析钢的淬火温度为Ac3以上30~50度;共析钢或过共析钢的淬火温度为Ac1以上30~50度。B.淬火目的淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或下贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。淬火工艺将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。常用的淬冷介质有盐水、水、矿物油、空气等。淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。淬火工艺主要用于钢件。常用的钢在加热到临界温度以上时,原有在室温下的组织将全部或大部转变为奥氏体。随后将钢浸入水或油中快速冷却,奥氏体即转变为马氏体。与钢中其他组织相比,马氏体硬度最高。淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。为此必须选择合适的冷却方法。根据冷却方法,淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火4类。淬火效果的重要因素,淬火工件硬度要求和检测方法:淬火工件的硬度影响了淬火的效果。淬火工件一般采用洛氏硬度计,测试HRC硬度。淬火的薄硬钢板和表面淬火工件可测试HRA的硬度。厚度小于0.8mm的淬火钢板、浅层表面淬火工件和直径小于5mm的淬火钢棒,可改用表面洛氏硬度计,测试HRN硬度。在焊接中碳钢和某些合金钢时,热影响区中可能发生淬火现象而变硬,易形成冷裂纹,这是在焊接过程中要设法防止的。由于淬火后金属硬而脆,产生的表面残余应力会造成冷裂纹,回火可作为在不影响硬度的基础上,消除冷裂纹的手段之一。淬火对厚度、直径较小的零件使用比较合适,对于过大的零件,淬火深度不够,渗碳也存在同样问题,此时应考虑在钢材中加入铬等合金来增加强度。淬火是钢铁材料强化的基本手段之一。钢中马氏体是铁基固溶体组织中最硬的相(表1),故钢件淬火可以获得高硬度、高强度。但是,马氏体的脆性很大,加之淬火后钢件内部有较大的淬火内应力,因而不宜直接应用,必须进行回火。表1钢中铁基固溶体的显微硬度值淬火工艺的应用淬火工艺在现代机械制造工业得到广泛的应用。机械中重要零件,尤其在汽车、飞机、火箭中应用的钢件几乎都经过淬火处理。为满足各种零件干差万别的技术要求,发展了各种淬火工艺。如,按接受处理的部位,有整体、局部淬火和表面淬火;按加热时相变是否完全,有完全淬火和不完全淬火(对于亚共析钢,该法又称亚临界淬火);按冷却时相变的内容,有分级淬火,等温淬火和欠速淬火等。工艺过程包括加热、保温、冷却3个阶段。下面以钢的淬火为例,介绍上述三个阶段工艺参数选择的原则。淬火加热温度淬火加热温度以钢的相变临界点为依据,加热时要形成细小、均匀奥氏体晶粒,淬火后获得细小马氏体组织。碳素钢的淬火加热温度范围如图1所示。淬火加热温度范围由本图示出的淬火温度选择原则也适用于大多数合金钢,尤其低合金钢。亚共析钢加热温度为Ac3温度以上30~50℃。从图上看,高温下钢的状态处在单相奥氏体(A)区内,故称为完全淬火。如亚共析钢加热温度高于Ac1、低于Ac3温度,则高温下部分先共析铁素体未完全转变成奥氏体,即为不完全(或亚临界)淬火。过共析钢淬火温度为Ac1温度以上30~50℃,这温度范围处于奥氏体与渗碳体(A+C)双相区。因而过共析钢的正常的淬火仍属不完全淬火,淬火后得到马氏体基体上分布渗碳体的组织。这-组织状态具有高硬度和高耐磨性。对于过共析钢,若加热温度过高,先共析渗碳体溶解过多,甚至完全溶解,则奥氏体晶粒将发生长大,奥氏体碳含量也增加。淬火后,粗大马氏体组织使钢件淬火态微区内应力增加,微裂纹增多,零件的变形和开裂倾向增加;由于奥氏体碳浓度高,马氏体点下降,残留奥氏体量增加,使工件的硬度和耐磨性降低。常用钢种淬火的温度参见表2。表2常用钢种淬火的加热温度实际生产中,加热温度的选择要根据具体情况加以调整。如亚共析钢中碳含量为下限,当装炉量较多,欲增加零件淬硬层深度等时可选用温度上限;若工件形状复杂,变形要求严格等要采用温度下限。淬火保温淬火保温时间由设备加热方式、零件尺寸、钢的成分、装炉量和设备功率等多种因素确定。对整体淬火而言,保温的目的是使工件内部温度均匀趋于一致。对各类淬火,其保温时间最终取决于在要求淬火的区域获得良好的淬火加热组织。加热与保温是影响淬火质量的重要环节,奥氏体化获得的组织状态直接影响淬火后的性能。-般钢件奥氏体晶粒控制在5~8级。淬火冷却要使钢中高温相——奥氏体在冷却过程中转变成低温亚稳相——马氏体,冷却速度必须大于钢的临界冷却速度。工件在冷淬火冷却却过程中,淬火冷却表面与心部的冷却速度有-定差异,如果这种差异足够大,则可能造成大于临界冷却速度部分转变成马氏体,而小于临界冷却速度的心部不能转变成马氏体的情况。为保证整个截面上都转变为马氏体需要选用冷却能力足够强的淬火介质,以保证工件心部有足够高的冷却速度。但是冷却速度大,工件内部由于热胀冷缩不均匀造成内应力,可能使工件变形或开裂。因而要考虑上述两种矛盾因素,合理选择淬火介质和冷却方式。冷却阶段不仅零件获得合理的组织,达到所需要的性能,而且要保持零件的尺寸和形状精度,是淬火工艺过程的关键环节。淬火方式1单介质淬火工件在一种介质中冷却,如水淬、油淬。优点是操作简单,易于实现机械化,应用广泛。缺点是在水中淬火应力大,工件容易变形开裂;在油中淬火,冷却速度小,淬透直径小,大型工件不易淬透。2双介质淬火工件先在较强冷却能力介质中冷却到300℃左右,再在一种冷却能力较弱的介质中冷却,如:先水淬后油淬,可有效减少马氏体转变的内应力,减小工件变形开裂的倾向,可用于形状复杂、截面不均匀的工件淬火。双液淬火的缺点是难以掌握双液转换的时刻,转换过早容易淬不硬,转换过迟又容易淬裂。为了克服这一缺点,发展了分级淬火法。3分级淬火工件在低温盐浴或碱浴炉中淬火,盐浴或碱浴的温度在Ms点附近,工件在这一温度停留2min~5min,然后取出空冷,这种冷却方式叫分级淬火。分级冷却的目的,是为了使工件内外温度较为均匀,同时进行马氏体转变,可以大大减小淬火应力,防止变形开裂。分级温度以前都定在略高于Ms点,工件内外温度均匀以后进入马氏体区。现在改进为在略低于Ms点的温度分级。实践表明,在Ms点以下分级的效果更好。例如,高碳钢模具在160℃的碱浴中分级淬火,既能淬硬,变形又小,所以应用很广泛。等温淬火工件在等温盐浴中淬火,盐浴温度在贝氏体区的下部(稍高于Ms),工件等温停留较长时间,直到贝氏体转变结束,取出空冷。等温淬火用于中碳以上的钢,目的是为了获得下贝氏体,以提高强度、硬度、韧性和耐磨性。低碳钢一般不采用等温淬火。表面淬火表面淬火是将刚件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。表面淬火时通过快速加热,使刚件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。感应淬火感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应淬火感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点:1.热源在工件表层,加热速度快,热效率高2.工件因不是整体加热,变形小3.工件加热时间短,表面氧化脱碳量少4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料的潜力,节约材料消耗,提高零件使用寿命5.设备紧凑,使用方便,劳动条件好6.便于机械化和自动化7.不仅用在表面淬火还可用在穿透加热与化学热处理等。感应淬火设备一般为感应淬火机床,由感应电源、负载线、电容器、变压器、感应器、机床几部分组成。感应淬火类型分为:工频、低频、中频、超音频、高频、超高频几种,根据淬硬深度需要来选择适用频率。淬硬层深度约大,所需频率越低,反之,则越高。目前感应淬火以中频、超音频、高频、超高频为主。中频一般为可控硅,目前国内有用IGBT感应电源做中频的,比可控硅节能,但是价格较可控硅的高。相对来说,IGBT是发展趋势,因其转换效率较高,而且性能稳定,内部实现软开关,不容易出故障。超音频、高频则是IGBT感应电源。目前国内IGBT感应电源已经历三代。第一代为窄频率多主板为显著特征。第二代则是宽频率范围,单一主板为主要特征。第三代,则从技术结构上进行了革命性的改变,实现数字化控制,能传输和储存能量监控数据,便于实现标准化管理。超高频一般以电子管为主,MOSFET也有一定发展,目前国内有以IGBT做的。电子管高频设备的环境污染已经总所周知,但是其取代者MOSFET故障率较高,引用范围收到限制。IGBT相对稳定,但是由于技术难度,国内仅有一家能做。