第六章水库诱发地震活动的工程地质分析6·1基本概念及研究意义在一定条件下,人类的工程活动可以诱发地震,诸如修建水库,城市或油田的抽水或注水,矿山坑道的崩塌,以及人工爆破或地下核爆炸等都能引起当地出现异常的地震活动,这类地震活动统称为诱发地震(inducedearthquake)。其形成一方面依赖于该区的地质条件、地应力状态和有待释放的应变能积累程度等因素;另一方面也与工程行为是否改变了一定范围内应力场的平衡状态密切相关。一般说来诱发地震的震级比较小,震源深度比较浅,对经济建设和社会生活的影响范围也比较小。但是水库诱发地震则曾经多次造成破坏性后果,更有甚者,水库诱发地震还经常威胁着水库大坝的安全,甚至可能酿成远比地震直接破坏更为严重的次生地质灾害,因此对水库诱发地震发生的可能性应予以高度重视。水库诱发地震活动发现于本世纪30年代。最早发现于希腊的马拉松水库.伴随该水库蓄水、1931年库区就产生了频繁的地震活动。此后,发现有相当一部分水库蓄水过程中伴随有水库诱发地震现象。60年代以来出现了一些新的情况:一方面是几个大水库相继产生了6级以上的强烈地震,造成大坝、附近建筑物的破坏和人员的死伤;另一方面是发现了深井注水(美国)可以诱发地震,为水库诱发地震的形成机制提供了有价值的资料。于是这方面的研究重新活跃起来。6.2水库诱发地震活动性变化的几种典型情况自1975年第一届国际诱发地震会议以来,经过研究的与水库蓄水有关的地震活动性变化的事例迅速增多。其中有的是活动性(频度、强度)增加,这类事例公认的约有百余例;活动性减弱的事例也有4例,绝大多数水库蓄水后地震活动性没有变化。下面分别介绍各种典型情况,而以水库活动性增强为着重点。6.2.1蓄水后地震活动性增强6.2.1.1卡里巴—科列马斯塔型地震活动性的主要变化主要发生在1963年6月水库蓄水位超出正常高水位之后,尤以1963年8月库水位超出正常高水位2.9m之后为最强烈,此时水头增值仅为2%,以此作为地震活动性强烈变化的诱因是缺乏说服力的。可是在正常高水位附近,水位波动几米库容变化却很大,显然库底岩石所承受的水库附加荷载以及附加荷载的影响深度都随之产生较大变化,水库底部承受附加应力超出一定值的岩石的体积也会产生很大变化。美国胡佛坝(米德湖)希腊科列玛斯塔坝赞比亚卡里巴坝坝型及坝高(m)重力拱坝,222心墙堆石坝,165双曲拱坝,127库容(亿m3)36747.51604开始蓄水及满库时间1935;1938.71965.7.21;1966.21958.12;1963.8地震活动特征第一次地震时间1936.91965.81961.7地震次数(起止时间)6000次(1936-1945)10000次(1936-1971)M≥2.0的前震740次,余震2580次(1966-1968)M≥2.0,1397次(1959.6-1968.12)主震震级(时间)5.0(1939.5.4)6.3(1966.2.5)6.1(1963.9.23)较大地震震级(时间)4.1(42.8.11);4.4(42.9.9);5.0(66.3.8);5.0(66.4.3);5.5(66.5.4);5.5(66.6.11);4.5(66.12.12)5.6(63.9.23);5.8(63.9.23);5.5(63.9.24);6.0(63.9.25);5.3(63.10.5);5.8(63.11.8);4.2(66.4.5);5.5(67.4.20)地震活动与水库蓄水的时空相关性及其它特征水库水升高到100m以上时发生地震,随水位进一步增高地震活动加强,库水达到正常高水位并继续上升时发生主震,95%以上的地震发生在距水库32km之内,震中沿断层分布充水开始后六个月水深仅120m即发生6.3级主震。1967-1972仅有宏观记录,地震活动频率与水位高度正相关。地震活动限于水库区小范围内地震活动与库水位的变化对应关系不明显,但与库底岩石中附加剪应力超过1巴的岩石体积Vτ正相关。确切定位的159次地震大多数位于水库范围内,且绝大部分位于坝附近库水最深的盆地中表6-1水库诱发地震活动重要实例印度科因纳坝中国新丰江坝中国丹江口坝塔吉克斯坦努列克坝块石混凝土重力坝,103单支墩大头坝,105宽缝重力坝,97土石坝,305m27.08115160.51051962.6;1964.81959.10.20;1961.9.231967.111972(105m);1976(205m);1981(305m)1963年地震频率明显增高1959.10,广州台记录到来自库区方向的2-4级地震三次;1960.7的4.3级地震才引起重视1968.3(Ms≥2)1971较集中的出现于水库西南10-15km1972.10水库主体之下出现地震M≥1.0,25000次(1963-1971)M≥3.0,450次(1963-1970)M≥4.0,35次(1969-1974)ML≥0.4,297035次(1961.9-1977.12)其中ML≥1.0,12862次Ms≥0.6,33761次(1960.10.13-1987.12.11)Ms≥1.0,13643次Ms≥0.5约110次Ms≥2.053次(1968.3-1977.4)1800次(1971-1979)1.4<M<4.66.5(1967.12.10)6.1(1962.3.19)4.7(1973.11.29)4.6(1972.11)5.8(67.12.11);5.4(67.12.12.06);5.9(67.12.12.15);5.5(67.12.13.05);5.6(67.12.13);5.4(67.12.24);5.0(68.3.8);5.4(68.10.29);5.1(73.10.17)4.9(62.4.5);5.1(62.7.29);4.3(63.12.6);5.3(64.9.23);4.5(72.12.18);4.5(73.12);4.3(75.7.25);4.7(77.5.12);4.3(75.7.25);4.3(81.5.4);4.6(87.9.15)4.2(73.11.29);4.6(73.11.30)4.2(1971.12)4.6(1972.11)4.3(1972.11)4.1(1975.3)4.1(1975.12)4.1(1976.9)地震频率与水位高度正相关,但地震活动性明显的滞后于高水位,一般3-6个月。震中集中分布于以坝为中心的25km为半径的范围内,且以10km为半径的范围内最为密集水库蓄水之后地震活动的频率和强度立即有明显提高,在1970年以前,地震频率特别是强度与水位高度正相关,但比水位高峰时间滞后2-4个月,70年后相关性减弱。地震主震分布于水库主体中轴线两端,以大坝附近峡谷区最密集,呈N30°W的密集带和N70°E的密集带,主震震中的两带交汇处,距大坝1.1km库水深达50米后(1969.12)开始有明显地震活动,地震频率和强度与水位间有明显的同步变化,频率峰值滞后于水位峰值约3个月,库容急增至最大之后1.5个月发生了较强震动。地震活动集中于丹库主体南北两端的灰岩峡谷区,库区外围本世纪内曾有6级地震,蓄水后地震活动向库区集中蓄水后地震活动超过蓄水前年平均发生率的四倍,最强的两次暴雨与1972年和1976年水位分别达到105m和205m相伴。所有大地震和多数地震活动都由水库充水速率下降所引发,地震活动性对充水速率降低反映迅速,滞后一般1-4日。1970年前地震分散地发生于库周附近,1972年后向水库主体集中,随库区水位增高上游充水,地震震中也向上游转移图6-3水库诱发地震的两类震源机制6.2.1.2科因纳—新丰江型1.科因纳水库诱发地震科因纳水库诱发地震之所以具有典型意义,就在于它是迄今为止最强的水库诱发地震(0.5级,地震序列中大于5.0级的达15次),而又是产生在构造迹象最不明显、岩层产状基本水平、近200a附近没有明显地层活动的印度地盾德干高原之上。库、坝区均位于厚达1500m、产状水平、自古至始新世喷发的玄武岩层之上,由致密块状玄武岩与凝灰岩及气孔状玄武岩互层,凝灰岩中夹有红色粘土,渗透性不良(图6-7)。6.3水库诱发地震的共同特点从以上典型实例描述可知,水库诱发地震不同类型虽各有其特性,但概括起来它们却有很多共性。这主要是这类地层的产生空间和地震活动随时间的变化与水库所在空间和水库水位或荷载随时间的变化密切相关,表示介质品质的地震序列有其固有特点和震源机制解得出的应力场与同一地区产生天然地震的应力场基本相同。6.3·1地震活动与水库的空间联系6.3.1.1震中密集于库坝附近通常主要是密集分布于水库边岸几km到十几km范围之内。或是密集于水库最大水深处及其附近(卡里巴、科因纳),或是位于水库主体两侧的峡谷区(新丰江见图6-12,丹江口如图6-25)。如库区及附近有断裂,则精确定位的震中往往沿断裂分布。有的水库诱发地层初期距水库较远而随后逐渐向水库集中(丹江口、苏联的努列克)。图6-25丹江口水库附近震中分布图(1969-1975年)1、2、3、4-蓄水前天然地震,圆圈大小表示震级;5-蓄水后诱发地震;6-水库边界6.3.1.2震源极浅、震源体小水库诱发地震主要发生在库水或水库荷载影响范围之内,所以震源深度很浅。一般多在地表之下10km之内,以4-7km范围内为最多,且有初期浅随后逐步加深的趋势。例如我国新丰江水库诱发地震1962年至1965年5月震源深度分布有如图6-26所示。由于震源浅,所以面波强烈,震中烈度一般较天然地层高,零点几级就有感,3级就可以造成破坏。我国天然地震震级与震中烈度之间,有如下的关系式M=0.58I0+1.5其中:M为震级;I0为震中烈度。由于震源极浅,水库诱发地震往往伴有地声。我国有地声的水库诱发地震有新丰江、丹江口、南冲、佛子岭。国外报导有地声者有蒙太纳、格朗格瓦尔、科列马斯塔、康特拉、福达溪坝等等。由于震源浅且震源体小,所以地震的影响范围小,等震线衰减迅速.其影响范围多属局部性的。6.3.2诱发地震活动与库水位及水荷载随时间变化的相关性这种相关性已被广泛用以判别地震活动是否属水库诱发地震。一般是水库蓄水几个月之后为微地震活动即有明显的增强,随后地震频度也随水位或库容而明显变化,但地震活动峰值在时间上均较水位或库容峰值有所滞后。我国几个水库诱发地震蓄水开始与微震活动加强有如表6-3所示的关系。水库名称震级(Ms)震源深实际震中烈度计算震中烈度造成的破坏丹江4.79ⅦⅥ-损坏房间1904间,倒墙305处前进3.03ⅤⅢ-有掉瓦现象南冲2.86ⅤⅡ+掉瓦,个别房屋裂缝表6-2我国某些水库诱发地震震中烈度比较水库名称蓄水时间地震活动加强时间间隔时间新丰江丹江口前进南冲柘林佛子岭1959.101967.111970.51967.71972.11954.61959.111970.1①1971.101967.81972.101954.1212417196①1970.1是根据三峡站记录地Ma≥1.2的地震。较小地震因库区无台未能测得,此值不可靠据另一种资料最早为1968.3.则间距为4月。表6-3水位的急剧上升与急剧下降,特别是急剧下降,往往有较强地震产生。例如丹江口的4.7级地震即产生在水位急剧上升后的急剧下降期,新丰江水库1977年的4.7级震也产生在水位急剧下降期(见图6一11)。6.3.3水库诱发地震序列的特点既然水库诱发地震有水的活动和水库荷载参与,这一特点必然在地震序列中有所反映。根据多个水库诱发地震序列的研究,它们的特点如下:(1)水库诱发地震以前震极丰富为特点,属于前震余震型(茂木2型),而相同地区的天然地震往往届主震余震型(茂木1型)(图6—27)。以新丰江水库诱发地震为例,从蓄水到主震发生的39个月内,共记录到从>o.4的前震81719次。过去认为天然的大地震都是突然发生的属主震余震型,近来以高倍率地震仪测知,大地震都是有前震的,只是前震小而少,因