水污染控制工程第11章

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十二章活性污泥法第一节基本概念第四节气体传递和曝气池第二节活性污泥法的发展第五节去除有机物的活性污泥法过程设计第三节活性污泥数学模型第一节基本概念什么是活性污泥?由细菌、菌胶团、原生动物、后生动物等微生物群体及吸附的污水中有机和无机物质组成的、有一定活力的、具有良好的净化污水功能的絮绒状污泥。一组活性污泥图片活性污泥的性质颜色黄褐色状态似矾花絮绒颗粒味道土腥味相对密度曝气池混合液:1.002~1.003回流污泥:1.004~1.006粒经0.02~0.2mm20~100cm2/mL比表面积曝气池曝气池出水堰曝气池混合液配水进入二沉池按栖息着的微生物分:活性污泥的组成大量的细菌真菌原生动物后生动物除活性微生物外,活性污泥还挟带着来自污水的有机物、无机悬浮物、胶体物;活性污泥中栖息的微生物以好氧微生物为主,是一个以细菌为主体的群体,除细菌外,还有酵母菌、放线菌、霉菌以及原生动物和后生动物。干固体和水分含水98%~99%干固体1%~2%MLSSMLVSSNVSS活性污泥的评价方法处理生活污水的活性污泥MLVSS:70%NVSS:30%MLSS表示悬浮固体物质总量,MLVSS挥发性固体成分表示有机物含量,MLNVSS灼烧残量,表示无机物含量。MLVSS包含了微生物量,但不仅是微生物的量,由于测定方便,目前还是近似用于表示微生物的量。MLVSS:一般范围为55%~75%NVSS:一般范围为25%~45%污泥沉降比:SV活性污泥的沉降浓缩性能取混合液至1000mL或100mL量筒,静止沉淀30min后,度量沉淀活性污泥的体积,以占混合液体积的比例(%)表示污泥沉降比。污泥体积指数:SVISV不能确切表示污泥沉降性能,故人们想起用单位干泥形成湿泥时的体积来表示污泥沉降性能,简称污泥指数,单位为mL/g。活性污泥法的基本流程活性污泥降解污水中有机物的过程污水与污泥混合曝气后BOD的变化曲线活性污泥降解污水中有机物的过程活性污泥在曝气过程中,对有机物的降解(去除)过程可分为两个阶段:吸附阶段稳定阶段由于活性污泥具有巨大的表面积,而表面上含有多糖类的黏性物质,导致污水中的有机物转移到活性污泥上去。主要是转移到活性污泥上的有机物为微生物所利用。对活性污泥法曝气过程中污水中有机物的变化分析得到结论:废水中的有机物残留在废水中的有机物从废水中去除的有机物微生物不能利用的有机物微生物能利用的有机物微生物能利用而尚未利用的有机物微生物不能利用的有机物微生物已利用的有机物(氧化和合成)(吸附量)增殖的微生物体氧化产物曲线①反映污水中有机物的去除规律;曲线②反映活性污泥利用有机物的规律;曲线③反映了活性污泥吸附有机物的规律。这三条曲线反映出,在曝气过程中:污水中有机物的去除在较短时间(图中是5h左右)内就基本完成了(见曲线①);污水中的有机物先是转移到(吸附)污泥上(见曲线③),然后逐渐为微生物所利用(见曲线②);吸附作用在相当短的时间(图中是45min左右)内就基本完成了(见曲线③);微生物利用有机物的过程比较缓慢(见曲线②)。第二节活性污泥法的发展传统活性污泥法渐减曝气分步曝气完全混合法浅层曝气深层曝气高负荷曝气或变形曝气克劳斯法延时曝气接触稳定法氧化沟纯氧曝气活性污泥生物滤池(ABF工艺)吸附-生物降解工艺(AB法)序批式活性污泥法(SBR法)活性污泥法的多种运行方式有机物去除和氨氮硝化在推流式的传统曝气池中,混合液的需氧量在长度方向是逐步下降的。实际情况是:前半段氧远远不够,后半段供氧量超过需要。渐减曝气的目的就是合理地布置扩散器,使布气沿程变化,而总的空气量不变,这样可以提高处理效率。渐减曝气渐减曝气把入流的一部分从池端引入到池的中部分点进水。阶段曝气阶段曝气示意图部分污水厂只需要部分处理,因此产生了高负荷曝气法。曝气池中的MLSS约为300~500mg/L,曝气时间比较短,约为1.5~3h,处理效率仅约65%左右,有别于传统的活性污泥法,故常称改良曝气。高负荷曝气延时曝气的特点:•曝气时间很长,达24h甚至更长,MLSS较高,达到3000~6000mg/L;•活性污泥在时间和空间上部分处于内源呼吸状态,剩余污泥少而稳定,无需消化,可直接排放;•适用于污水量很小的场合,近年来,国内小型污水处理系统多有使用。延时曝气吸附再生法混合液曝气过程中第一阶段BOD5的下降是由于吸附作用造成的,对于溶解的有机物,吸附作用不大或没有,因此,把这种方法也称为接触稳定法,也叫吸附再生法。混合液的曝气完成了吸附作用,回流污泥的曝气完成稳定作用。直接用于原污水的处理比用于初沉池的出流处理效果好;可省去初沉池;此方法剩余污泥量增加。吸附再生法完全混合法在分步曝气的基础上,进一步大大增加进水点,同时相应增加回流污泥并使其在曝气池中迅速混合,长条形池子中也能做到完全混合状态。完全混合的概念(1)池液中各个部分的微生物种类和数量基本相同,生活环境也基本相同。(2)入流出现冲击负荷时,池液的组成变化也较小,因为骤然增加的负荷可为全池混合液所分担,而不是像推流中仅仅由部分回流污泥来承担。完全混合池从某种意义上来讲,是一个大的缓冲器和均和池,在工业污水的处理中有一定优点。(3)池液里各个部分的需氧量比较均匀。完全混合法的特征完全混合法深层曝气深井曝气法处理流程深井曝气池简图一般曝气池直径约1~6m,水深约10~20m。深井曝气法深度为50~150m,节省了用地面积。在深井中可利用空气作为动力,促使液流循环。深井曝气法中,活性污泥经受压力变化较大,实践表明这时微生物的活性和代谢能力并无异常变化,但合成和能量分配有一定的变化。深井曝气池内,气液紊流大,液膜更新快,促使KLa值增大,同时气液接触时间延长,溶解氧的饱和度也由深度的增加而增加。当井壁腐蚀或受损时,污水可能会通过井壁渗透,污染地下水。深层曝气纯氧代替空气,可以提高生物处理的速度。纯氧曝气池的构造见右图。纯氧曝气纯氧曝气的缺置复杂,运转管理点是纯氧发生器容易出现故障,装较麻烦。在密闭的容器中,溶解氧的饱和度可提高,氧溶解的推动力也随着提高,氧传递速率增加了,因而处理效果好,污泥的沉淀性也好。纯氧曝气并没有改变活性污泥或微生物的性质,但使微生物充分发挥了作用。克劳斯工程师把厌氧消化的上清液加到回流污泥中一起曝气,然后再进入曝气池,克服了高碳水化合物的污泥膨胀问题,这个方法称为克劳斯法。消化池上清液中富有氨氮,可以供应大量碳水化合物代谢所需的氮。消化池上清液夹带的消化污泥相对密度较大,有改善混合液沉淀性能的功效。克劳斯法吸附-生物降解工艺(AB法)A级以高负荷或超高负荷运行,B级以低负荷运行,A级曝气池停留时间短,30~60min,B级停留时间2~4h。该系统不设初沉池,A级曝气池是一个开放性的生物系统。A、B两级各自有独立的污泥回流系统,两级的污泥互不相混。处理效果稳定,具有抗冲击负荷和pH变化的能力。该工艺还可以根据经济实力进行分期建设。吸附-生物降解工艺(AB法)序批式活性污泥法(SBR法)SBR工艺的基本运行模式由进水、反应、沉淀、出水和闲置五个基本过程组成,从污水流入到闲置结束构成一个周期,在每个周期里上述过程都是在一个设有曝气或搅拌装置的反应器内依次进行的。(1)工艺系统组成简单,不设二沉池,曝气池兼具二沉池的功能,无污泥回流设备;(2)耐冲击负荷,在一般情况下(包括工业污水处理)无需设置调节池;(3)反应推动力大,易于得到优于连续流系统的出水水质;(4)运行操作灵活,通过适当调节各单元操作的状态可达到脱氮除磷的效果;(5)污泥沉淀性能好,SVI值较低,能有效地防止丝状菌膨胀;(6)该工艺的各操作阶段及各项运行指标可通过计算机加以控制,便于自控运行,易于维护管理。序批式活性污泥法(SBR法)SBR工艺与连续流活性污泥工艺相比的优点(1)容积利用率低;(2)水头损失大;(3)出水不连续;(4)峰值需氧量高;(5)设备利用率低;(6)运行控制复杂;(7)不适用于大水量。序批式活性污泥法(SBR法)SBR工艺的缺点氧化沟是延时曝气法的一种特殊形式,它的池体狭长,池深较浅,在沟槽中设有表面曝气装置。曝气装置的转动,推动沟内液体迅速流动,具有曝气和搅拌两个作用,沟中混合液流速约为0.3~0.6m/s,使活性污泥呈悬浮状态。氧化沟第三节活性污泥法数学模型基础•建立模型的假设•1.曝气池处于完全混合状态•2.进水中微生物浓度假设为零•3.全部可生物降解的底物都处于溶解状态•4.系统处于稳定状态•5.二沉池中没有微生物的活动•6.二沉池中没有污泥累计,泥水分离良好QS0X0Se,X,V(1+R)Q,Se,X曝气池剩余污泥Qw,Se,X出水(Q-Qw),Se,X剩余污泥Qw,Se,X回流污泥RQ,Se,XR二沉池完全混合活性污泥法系统的典型流程劳伦斯和麦卡蒂模型污泥龄:易知:TTctXX/RwewcXQXQQXV在稳态条件下,对全系统作活性污泥的物料平衡,有:0])[(0VdtdXXQXQQQXgRWeWduRWeWKdtdSXYXVXQXQQ1)(ducKdtdSXY11根据前述假定,进水微生物浓度可以忽略,故:c1故:deSecKSKSrYmax11)()1(maxdccdSeKYrKKS说明活性污泥法系统的出水有机物浓度仅仅是污泥龄和动力学参数的函数,与进水有机物浓度无关QS0X0Se,X,V(1+R)Q,Se,X曝气池出水(Q-Qw),Se,Xe剩余污泥Qw,Se,XR回流污泥RQ,Se,XR二沉池在稳态条件下,作曝气池底物的物料平衡,有:010eueQSRVdtdSRQSQSVSSQdtdSeu)(0decKXVSSQY)(10cdceKVSSYQX10说明活性污泥浓度与进出水水质、污泥龄和动力学参数密切相关。ducKdtdSXY11模型中的参数的测定方法法eSeedeSedecSKSrXVSSQKSKSrYKXVSSQYmax0max0)()(1maxmax011rSrKSStXeSe取得倒数,并令V/Q=t则:对于产率系数Y:dobsKYY1cdobsKYY1YYKYcdobs11ceobsSStXY)(0YYKtXSScdce1)(0Yobs可取:可以用作图法求得Y。对已城市污水,典型的动力学参数可参考表12-2(P125)一般二沉池沉淀效果良好时,出水的SS可忽略,于是污泥龄的表达式可简化为:cRWXVXQX即:RWcXQXV此式可用于求剩余污泥量。在稳态条件下,对进入和离开曝气池的微生物体建立物料平衡方程,可推导出污泥回流比R与污泥龄之间的关系式。QS0X0Se,X,V(1+R)Q,Se,X曝气池出水(Q-Qw),Se,X剩余污泥Qw,Se,X回流污泥RQ,Se,XR二沉池01XRQVdtdXRQXgR0)1(XRQVXKdtdSYRQXduR0)1()(XRQVXKYKXSRQXdeRdecKYKS1CcdeYKKS1)1(1XXRRVQRcSVIXR6max10)(令K=rmax/Ks,则:第四节气体传递原理和曝气设备活性污泥法的三个要素构成一是引起吸附和氧化分解作用的微生物,也就是活性污泥;二是废水中的有机物,它是处理对象,也是微生物的食料;三是溶解氧,没有充足的溶解氧,好氧微生物既不能生存,也不能发挥氧化分解作用。气体传递原理双膜理论的基点是认为在气液界面存在着二层膜(即气膜和液膜)这一物理现象。这两层薄膜使气体分子从一相进入另一相时受到了阻力。当气体分子从气相向液相传递时,若气体的溶解度低,则阻力主要来自液膜。在废水生物处理系统中,氧的传递速率可用下式表示:式中:dm/dt——气体传递速率;D——气体扩散系数;A——气体扩散通过

1 / 185
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功