量子力学作业答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m与温度T成反比,即mT=b(常量);并近似计算b的数值,准确到二位有效数字。解根据普朗克的黑体辐射公式dvechvdkThvvv11833,(1)以及cv,(2)ddvvv,(3)有,118)()(5kThcvvehccdcdddv这里的的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。本题关注的是λ取何值时,取得极大值,因此,就得要求对λ的一阶导数为零,由此可求得相应的λ的值,记作m。但要注意的是,还需要验证对λ的二阶导数在m处的取值是否小于零,如果小于零,那么前面求得的m就是要求的,具体如下:01151186'kThckThcekThcehc0115kThcekThckThcekThc)1(5如果令x=kThc,则上述方程为xex)1(5这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhcTm把x以及三个物理常量代入到上式便知KmTm3109.21.4利用玻尔——索末菲的量子化条件,求:(1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。已知外磁场H=10T,玻尔磁子124109TJMB,试计算运能的量子化间隔△E,并与T=4K及T=100K的热运动能量相比较。解玻尔——索末菲的量子化条件为nhpdq其中q是微观粒子的一个广义坐标,p是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n是正整数。(1)设一维谐振子的劲度常数为k,谐振子质量为μ,于是有22212kxpE这样,便有)21(22kxEp这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据221kxE可解出kEx2这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有xxxxnhdxkxEdxkxE)21(2)()21(222nhdxkxEdxkxExxxx)21(2)21(222hndxkxExx2)21(22为了积分上述方程的左边,作以下变量代换;sin2kEx这样,便有hnkEdE2sin2cos2222222cos2cos2hndkEEhndkE2cos2222这时,令上式左边的积分为A,此外再构造一个积分222sin2dkEB这样,便有22222cos2,22dkEBAkEdkEBA(1)2222,cos)2(2cosdkEdkE这里=2θ,这样,就有0sindkEBA(2)根据式(1)和(2),便有kEA这样,便有hnkE2khnE2,knh其中2hh最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的能量是等间隔分布的。(2)当电子在均匀磁场中作圆周运动时,有BqR2qBRp这时,玻尔——索末菲的量子化条件就为20)(nhRqBRdnhqBR22nhqBR2又因为动能耐22pE,所以,有22)(2222RBqqBRE,22BnBNqnBqBn其中,2qMB是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且BBME具体到本题,有JJE232410910910根据动能与温度的关系式kTE23以及JeVKk223106.1101可知,当温度T=4K时,JJE2222106.9106.145.1当温度T=100K时,JJE2022104.2106.11005.1显然,两种情况下的热运动所对应的能量要大于前面的量子化的能量的间隔。2.2由下列定态波函数计算几率流密度:ikrikrerer1)2(1)1(21从所得结果说明1表示向外传播的球面波,2表示向内(即向原点)传播的球面波。解:分量只有和rJJ21在球坐标中sinr1er1err0rmrkrmrkrrikrrrikrrmirerrererrermimiJikrikrikrikr30202201*1*111)]11(1)11(1[2)]1(1)1(1[2)(2)1(rJ1与同向。表示向外传播的球面波。rmrkrmrkr)]r1ikr1(r1)r1ikr1(r1[m2ir)]er1(rer1)er1(rer1[m2i)(m2iJ)2(3020220ikrikrikrikr*2*222可见,rJ与2反向。表示向内(即向原点)传播的球面波。补充:设ikxex)(,粒子的位置几率分布如何?这个波函数能否归一化?dxdx*∴波函数不能按1)(2dxx方式归一化。其相对位置几率分布函数为12表示粒子在空间各处出现的几率相同。2.3一粒子在一维势场axaxxxU,,,000)(中运动,求粒子的能级和对应的波函数。解:txU与)(无关,是定态问题。其定态S—方程)()()()(2222xExxUxdxdm在各区域的具体形式为Ⅰ:)()()()(20111222xExxUxdxdmx①Ⅱ:)()(2022222xExdxdmax②Ⅲ:)()()()(2333222xExxUxdxdmax③由于(1)、(3)方程中,由于)(xU,要等式成立,必须0)(1x0)(2x即粒子不能运动到势阱以外的地方去。方程(2)可变为0)(2)(22222xmEdxxd令222mEk,得0)()(22222xkdxxd其解为kxBkxAxcossin)(2④根据波函数的标准条件确定系数A,B,由连续性条件,得)0()0(12⑤)()(32aa⑥⑤0B⑥0sinkaA),3,2,1(0sin0nnkakaA∴xanAxsin)(2由归一化条件1)(2dxx得1sin022axdxanA由mnabaxdxanxam2sinsinxanaxaAsin2)(22222mEk),3,2,1(22222nnmaEn可见E是量子化的。对应于nE的归一化的定态波函数为axaxaxxeanatxtEinn,,00,sin2),(2.4.证明(2.6-14)式中的归一化常数是aA1证:axaxaxanAn,0),(sin(2.6-14)由归一化,得aAaxannaAaAdxaxanAxAdxaxanAdxaxanAdxaaaaaaaaaan222222222)(sin2)(cos22)](cos1[21)(sin1∴归一化常数aA1#2.5求一维谐振子处在激发态时几率最大的位置。解:222122)(xxex22222322211224)()(xxexexxx22]22[2)(3231xexxdxxd令0)(1dxxd,得xxx10由)(1x的表达式可知,xx0,时,0)(1x。显然不是最大几率的位置。2222)]251[(4)]22(2)62[(2)(44223322223212xxexxexxxxdxxd而0142)(321212edxxdx可见1x是所求几率最大的位置。#3.2.氢原子处在基态0/301),,(arear,求:(1)r的平均值;(2)势能re2的平均值;(3)最可几半径;(4)动能的平均值;(5)动量的几率分布函数。解:(1)drddrreadrrrarsin1),,(02200/230200/233004draraar01!naxnandxex04030232!34aaa02203020/23020200/230202002/230222144sinsin1)()2(000aeaaedrreaeddrdreaeddrdreraereUararar(3)电子出现在r+dr球壳内出现的几率为02022sin)],,([)(ddrdrrdrrdrreaar2/230042/23004)(rearar0/2030)22(4)(arreraadrrd令0321,,00)(arrrdrrd,当0)(,021rrr时,为几率最小位置0/222003022)482(4)(areraraadrrd08)(230220eadrrdar∴0ar是最可几半径。(4)2222ˆ21ˆpT02002/2/302sin)(1200ddrdreeaTarar22222sin1)(sinsin1)(1rrrr02002/22/302sin)]([11200ddrdredrdrdrdreaarar0/020302)2(1(240drearraaar20220204022)442(24aaaa(5)drrpcp),,()()(*200cos02/302/3sin1)2(1)(0ddedrreapcpriar0cos0/2302/3)cos()2(20dedrerapriar00cos/2302/30)2(2priareiprdrera0/302/3)()2(20dreereipapripriar01!naxnandxex])1(1)1(1[)2(22020302/3piapiaipa222200330)1(421paaipipa222204400330)(24paaaa222202/30)()2(paa动量几率分布函数422025302)(8)()(paapcp3.5一刚性转子转动惯量为I,它的能量的经典表示式是ILH22,L为角动量,求与此对应的量子体系在下列情况下的定态能量及波函数:(1)转子绕一固定轴转动:(2)转子绕一固定点转动:解:(1)设该固定轴沿Z轴方向,则有22ZLL哈米顿算符22222ˆ21ˆddILIHZ其本征方程为(tH与ˆ无关,属定态问题))(2)()()(2222222IEddEddI令222IEm

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功