量子力学曾谨言习题解答第十章

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十章:散射问题[1]用玻恩近似法,求在下列势场中的散射微分截面:(1)ararVrV0)(0(2)20)(areVrV)0(a(3)rerVar)()0(a(4)areVrV0)()0(a(5)2)(rarV(解)(1)先列出玻恩近似法的基本公式。根据理论,如果散射粒子所在的势场是)(rV。粒子质量是,粒子的波数是k(因是弹性散射,在散射前后都用此文字表示,它与能量E的关系是222Ek)散射角度是,而)(q表示以下参数:2sin2)(kq(1)则与散射方向对应的散射振幅用下述一维定积分计算02sin)(2)(drrqrrVqf(2)是为玻恩的散射振幅公式一般适用于高能量散射,若)()(0arVrV代入(2):adrrqrqVf020sin2)(利用积分公式qxqxqxqqxdxxcossin1sin2于前一式,注意上下限为a和0。)cossin(2)(220qqaaqqaqVf(3)微分截面:22242022)cossin(4)()(qqaaqqaqVf~400~《量子力学》考试大纲一.绪论(3)1.了解光的波粒二象性的主要实验事实;2.掌握德布罗意关于微观粒子的波粒二象性的假设。二.波函数和薛定谔方程(12)(1)理解量子力学与经典力学在关于描写微观粒子运动状态及其运动规律时的不同观念。(2)掌握波函数的标准化条件:有限性、连续性、单值性.(3)理解态叠加原理以及任何波函数Ψ(x,t)按不同动量的平面波展开的方法及其物理意义.(4)了解薛定谔方程的建立过程以及它在量子力学中的地位;薛定谔方程和定态薛定谔方程的关系;波函数和定态波函数的关系.(5)对于求解一维薛定谔方程,应掌握边界条件的确定和处理方法.(6)关于一维定态问题要求如下:a.掌握一维无限阱的求解方法及其物理讨论;b.掌握一维谐振子的能谱及其定态波函数的一般特点:c.了解势垒贯穿的讨论方法及其对隧道效应的解释.三.力学量用算符表达(17)(1)掌握算符的本征值和本征方程的基本概念;厄米算符的本征值必为实数;坐标算符和动量算符以及量子力学中一切可观察的力学量所对应的算符均为厄米算符.(2)掌握有关动量算符和角动量算符的本征值和本征函数,它们的归一性和正交性的表达形式,以及与这些算符有关的算符运算的对易关系式.(3)电子在正点电荷库仑场中的运动提供了三维中心力场下薛定谔方程求解的范例,学生应由此了解一般三维中心力场下求解薛定谔方程的基本步骤和方法,特别是分离变量法.(4)掌握力学量平均值的计算方法.将体系的状态波函数Ψ(x)按算符Fˆ的本征函数展开是这些方法中常用的方法之一,学生应掌握这一方法计算力学量的可能值、概率和平均值.理解在什么状态下力学量Fˆ具有确定值以及在什么条件下,两个力学量GFˆˆ和同时具有确定值.(5)掌握不确定关系并应用这一关系来估算一些体系的基态能量.(6)掌握如何根据体系的哈密顿算符来判断该体系中可能存在的守恒量如:能量、动量、角动量、宇称等.四.态和力学量的表象(10)(1)理解力学量所对应的算符在具体的表象下可以用矩阵来表示;厄米算符与厄米矩阵相对应;力学量算符在自身表象下为一对角矩阵;(2)掌握量子力学公式的矩阵形式及求解本征值、本征矢的矩阵方法.(3)理解狄拉克符号及占有数表象五.微扰理论(16)(1)了解定态微扰论的适用范围和条件:(2)对于非简并的定态微扰论要求掌握波函数一级修正和能级一级、二级修正的计算.(3)对于简并的微扰论,应能掌握零级波函数的确定和一级能量修正的计算.(4)掌握变分法的基本应用;(5)关于与时间有关的微扰论要求如下:a.了解由初态i跃迁到末态f的概率表达式,特别是常微扰和周期性微扰下的表达式;b.理解由微扰矩阵元Hfi≠0可以确定选择定则;c.理解能量与时间之间的不确定关系:ΔEΔt∽d.理解光的发射与吸收的爱因斯坦系数以及原子内电子由i态跃迁到f态的辐射强度均与矩阵元fir的模平方∣fir∣2成正比,由此可以确定偶极跃迁中角量子数和磁量子数的选择定则.(5)了解氢原子一级斯塔克效应及其解释.*六、散射问题(8)七.自旋和全同粒子(15)(1)了解斯特恩—格拉赫实验.电子自旋回转磁比率与轨道回转磁比率.(2)掌握自旋算符的对易关系和自旋算符的矩阵形式(泡利矩阵).与自旋相联系的测量值、概率、平均值等的计算以及本征值方程和本征函数的求解方法.(3)了解简单塞曼效应的物理机制.(4)了解L-S藕合的概念及碱金属原子光谱双线结构和物理解释.(5)根据量子力学的全同性原理、多体全同粒子波函数有对称和反对称之分.掌握玻色子体系多体波函数取交换对称形式,费米子体系取交换反对称形式,以及费米子服从泡利不相容原理.(6)理解在自旋与轨道相互作用可以忽略时,体系波函数可写为空间部分和自旋部分乘积形式.对于两电子体系则有自旋单重态和三重态之分.前者自旋波函数反对称,空间波函数对称;后者自旋波函数对称,空间波函数反对称.(7)作为一个具体的实例:了解氦原子能谱有正氦和仲氦之分的物理机制.教材:《量子力学教程》(周世勋)

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功