预备党员思想汇报(7月)紧迫感和自觉性

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页*共21页第3章子空间(有限),积空间,商空间在这一章中我们介绍通过已知的拓扑空间构造新的拓扑空间的三种惯用的办法.为了避免过早涉及某些逻辑上的难点,在§3.2中我们只讨论有限个拓扑空间的积空间,而将一般情形的研究留待以后去作.§3.1子空间本节重点:掌握度量子空间、拓扑空间子空间的概念,子空间的拓扑与大空间拓扑之间的关系以及子空间的闭集、邻域、基、导集、闭包与大空间相应子集之间的关系及表示法.讨论拓扑空间的子空间目的在于对于拓扑空间中的一个给定的子集,按某种“自然的方式”赋予它一个拓扑使之成为一个拓扑空间,以便将它作为一个独立的对象进行考察.所谓“自然的方式”应当是什么样的方式?为回答这个问题,我们还是先从度量空间做起,以便得到必要的启发.考虑一个度量空间和它的一个子集.欲将这个子集看作一个度量空间,必须要为它的每一对点规定距离.由于这个子集中的每一对点也是度量空间中的一对点,因而把它们作为子集中的点的距离就规定为它们作为度量空间中的点的距离当然是十分自然的.我们把上述想法归纳成定义:定义3.1.1设(X,ρ)是一个度量空间,Y是X的一个子集.因此,Y×YX×X.显然:Y×Y→R是Y的一个度量(请自行验证).我们称Y的度量,是由X的度量ρ诱导出来的度量.度量空间(Y,ρ)称为度量空间(X,ρ)的一个度量子空间.2我们常说度量空间Y是度量空间X的一个度量子空间,意思就是指Y是X的一个子集,并且Y的度量是由X的度量诱导出来的.我们还常将一个度量空间的任何一个子集自动地认作一个度量子空间而不另行说明.例如我们经常讨论的:实数空间R中的各种区间(a,b),[a,b],(a,b]等;n+1维欧氏空间中的n维单位球面:n维单位开、闭球体:以及n维单位开、闭方体和等等,并且它们也自然被认作是拓扑空间(考虑相应的度量诱导出来的拓扑).定理3.1.1设Y是度量空间X的一个度量子空间.则Y的子集U是Y中的一个开集当且仅当存在一个X中的开集V使得U=V∩Y.证明由于现在涉及两个度量空间,我们时时要小心可能产生的概念混淆.对于x∈X(y∈Y),临时记度量空间X(Y)中以x(y)为中心以ε>0为半径的球形邻域为,.首先指出:有=∩Y.这是因为z∈X属于当且仅当z∈Y且(z,y)ε.现在设U∈,由于Y的所有球形邻域构成的族是Y的拓扑的一个基,U可以表示为Y中的一族球形邻域,设为A的并.于是第3页*共21页设,∴U=V∩Y另一方面,设U=V∩Y,其中V∈.如果y∈U,则有y∈Y和y∈V.,有按照定理3.1.1的启示,我们来逐步完成本节开始时所提出的任务.定义3.1.2设A是一个集族,Y是一个集合.集族{A∩Y|A∈A}称为集族A在集合Y上的限制,记作引理3.1.2设Y是拓扑空间(X,T)的一个子集.则集族是Y的一个拓扑.证明我们验证满足拓扑定义中的三个条件:(1)由于X∈T和Y=X∩Y,所以Y∈;由于∈T,=∩Y,所以∈(2)如果A,B∈,即于是(3)如果是集族的一个子集族,即对于每一个A∈,4定义3.1.3设Y是拓扑空间(X,T)的一个子集.Y的拓扑称为(相对于X的拓扑T而言的)相对拓扑;拓扑空间(Y,,)称为拓扑空间的一个(拓扑)子空间.我们常说拓扑空间Y是拓扑空间X的一个子空间,意思就是指Y是X的一个子集,并且Y的拓扑就是对于X的拓扑而言的相对拓扑.此外,我们也常将拓扑空间的子集认为是一个子空间而不另行说明.假设Y是度量空间X的一个子空间.现在有两个途径得到Y的拓扑:一是通过X的度量诱导出Y的度量,然后考虑Y的这个度量诱导出来的拓扑;另一是先将X考虑成一个拓扑空间,然后考虑Y的拓扑为X的拓扑在Y上引出来的相对拓扑.事实上定理3.1.1已经指出经由这两种途径得到的Y的两个拓扑是一样的.下面把这层意思重新叙述一遍.定理3.1.3设Y是度量空间X的一个度量子空间.则X与Y都考虑作为拓扑空间时Y是X的一个(拓扑)子空间.定理3.1.4设X,Y,Z都是拓扑空间.如果Y是X的一个子空间,Z是Y的一个子空间,则Z是X的一个子空间.证明当Y是X的一个子空间,Z是Y的一个子空间时,我们有;并且若设T为X的拓扑时,Z的拓扑是()={U∩Y|U∈T}={U∩Y∩Z|U∈T}={U∩Z|U∈T}=因此Z是X的一个子空间.定理3.1.5设Y是拓扑空间X的一个子空间,y∈Y.则(l)分别记T和为X和Y的拓扑,则=;(2)分别记F和为X和Y的全体闭集构成的族,则=;第5页*共21页(3)分别记和y为点y在X和Y中的邻域系,则y=.证明(1)即是子空间和相对拓扑的定义.(2)成立是因为:={(X-U)∩Y|U∈T}={Y-U∩Y|U∈T}=(3)设则,因此存在使得V=∩Y,令,由于并且=V∪U=U所以U∈.以上证明.类似的论证指出定理3.1.6设Y是拓扑空间X的一个子空间,A是Y的一个子集.则(1)A在y中的导集是A在X中的导集与Y的交;(2)A在Y中的闭包是A在X中的闭包与Y的交.证明为证明这个定理,我们仍分别记A在X中的导集和闭包为d(A)和;而记A在Y中的导集和闭包分别为(A)和(A).(l)一方面,设y∈(A).则对于y在X中的任何一个邻域U,根据定理3.1.5,U∩Y是y在Y中的一个邻域,所以因此y∈d(A).此外当然有y∈Y.所以y∈d(A)∩y.这证明(A)d(A)∩Y.另一方面,设y∈d(A)∩Y,6所以y∈(A).这证明d(A)d(A)∩Y.(2)成立是因为(A)=A∪(A)=A∪(d(A)∩Y)=(A∪d(A))∩(A∪Y)=∩Y定理3.1.7设Y是拓扑空间X的一个子空间,y∈Y.则(1)如果B是拓扑空间X的一个基,则是子空间Y的一个基;(2)如果是点y在拓扑空间X中的一个邻域基,则是点y在子空间Y中的一个邻域基.证明(1)设B是X的一个基.对于Y中的任何一个开集U,存在X中的一个开集V使得U=V∩Y;存在B的一个子族,使得V=.因此U=由于上式中的每一个B∩Y是中的一个元素,所以在上式中U已经表示成了中的某些元素之并了.因此是Y的一个基.(2)证明(略).“子空间”事实上是从大拓扑空间中“切割”出来的一部分.这里有一个反问题,概言之就是:一个拓扑空间什么时候是另一个拓扑空间的子空间?换言之,一个拓扑空间在什么条件下能够“镶嵌”到另一个拓扑空间中去?当然假如我们拘泥于某些细节,例如涉及的拓扑空间是由什么样的点构成的,那么问题会变得十分乏味,然而我们在§2.2中便提到过,拓扑学的中心任务是研究拓扑不变性质,也就是说我们不去着意区别同胚的两个拓扑空间.在这种意义下,以上问题可以精确地陈述如下:第7页*共21页定义3.1.4设X和Y是两个拓扑空间,f:X→Y.映射f称为一个嵌入,如果它是一个单射,并且是从X到它的象集f(X)的一个同胚.如果存在一个嵌入f:X→Y,我们说拓扑空间X可嵌入拓扑空间Y.事实上,拓扑空间X可嵌入拓扑空间Y意思就是拓扑空间X与拓扑空间Y的某一个子空间同胚.换言之,在不区别同胚的两个拓扑空间的意义下,X“就是”Y的一个子空间.不能嵌入的一个简单例子是,一个离散空间,如果它含有多于一个点,就决不可能嵌入到任何一个平庸空间中去;反之,一个平庸空间,如果它含有多于一个点,也决不可能嵌入到任何一个离散空间中去.欧氏平面中的单位圆周是否可以嵌入到实数空间(即直线)中去呢?这个问题我们到第四章中再作处理.本书中我们还会涉及一些比较深刻的嵌入定理.本节关键:掌握拓扑空间中的子集(这里称为子空间)的开集、闭集、闭包、导集”长”得什么模样.作业:P951.2.5.7.8§3.2(有限)积空间本节重点:掌握乘积空间的度量与拓扑的定义.掌握积拓扑的基与子基的结构.掌握投射的定义与性质.掌握定理3.2.7与定理3.2.9的作用.给定了两个拓扑空间,我们首先可以得到一个集合作为它们的笛卡儿积.如何按某种自然的方式给定这个笛卡儿积一个拓扑使之成为拓扑空间?为此我们先对度量空间中的同类问题进行研究.首先回顾n维欧氏空间中的度量是如何通过实数空间中的度量来定义的:如果x=,y=,则x与y的距离定义为其中是R中的两个点的通常距离.这种定义方式推广到有限个度量空间的笛卡儿积中去不会产生任何困难.第9页*共21页定义3.2.1设是n≥1个度量空间.令X=.定义ρ:X×X→R使得对于任何x=y=∈X,容易验证ρ是X的一个度量.(请自行验证,注意验证中要用到2.1节附录中的Schwarz引理)我们称ρ为笛卡儿积X=的积度量;称度量空间(X,ρ)为n个度量空间的度量积空间.根据上述定义明显可见,n维欧氏空间就是n个实数空间R的度量积空间,先来考察积度量所诱导出来的拓扑有什么样的性质,以便使我们得到在拓扑空间中应该如何引出积空间的概念的启示.定理3.2.1设是n>0个度量空间,(X,ρ)是它们的积空间.又设和分别是由度量和ρ所诱导出来的和X的拓扑,其中i=l,2,…,n.则X的子集族:B={|i=1,2,…n}是X的拓扑的一个基.证明:我们仅就n=2的情形加以证明.首先根据积度量的定义容易得到(请自行验证):对于任意x=∈X和任意ε>0,我们有:设∈B,其中分别是中的开集.10如果x=∈则其中ε=min{}.这说明.由于x是中的任意一个点,因此.这证明了这就是说,X中的每一个开集是B中的某些元素的并.这完成了B是的一个基的证明.一般情形的证明是完全类似的,请读者自己补证.在定理3.2.1的启示下,我们按以下方式引进有限个拓扑空间的积空间这一概念.定理3.2.2设是n≥1个拓扑空间.则X=有惟一的一个拓扑T以X的子集族B={|,i=1,2,…n}为它的一个基.证明我们有:(1)由于X=∈B所以第11页*共21页(2)如果,∈B,其中,i=1,2,…,n,则(,)∩()=应用第二章中的定理2.6.3可见本定理的结论成立.定义3.2.2设是n≥1个拓扑空间.则X=的以子集族B={|,i=1,2,…n}为它的一个基的那个惟一的拓扑T称为拓扑的积拓扑,拓扑空间(X,T)称为拓扑空间的(拓扑)积空间.设是n≥1个度量空间.则笛卡儿积X=可以有两种方式得到它的拓扑:一是先将X作成度量积空间,然后再由积度量诱导出X的拓扑;另一是先用每一个的度量诱导出的拓扑,然后再将X考虑作为诸拓扑空间的拓扑积空间.定理3.2.1实际上已经指出这两种拓扑是一致的,现将这一点明确陈述如下:定理3.2.3设X=是n≥1个度量空间的度量积空间.则将X和都考虑作为拓扑空间时,X是的(拓扑)积空间.特别地,作为拓扑空间,n维欧氏空间便是n个实数空间R的(拓扑)积空间.12定理3.2.4设X=是n≥1个拓扑空间的积空间,对于每一个i=1,2,…,n,拓扑空间有一个基.则X的子集族={|,i=1,2,…n}是拓扑空间X的一个基.证明设为的拓扑,i=1,2,…,n.令B如积拓扑的定义中的积拓扑的那个基.为证明是积空间X的一个基,只需证明B中的每一个元素均可以表示为中的某些元素的并.为证此,设∈B,其中.由于是的一个基,故对于每一个i,存在使得于是其中D={|,i=1,2,…n}这就完成了我们所需的证明.例3.2.1由于实数空间R有一个基由所有的开区间构成,故应用定理3.2.4立即可见,n维欧氏空间中的所有开方体构成的一个基.特别地,欧氏平面有一个基由所有的开矩形构成.定理3.2.5设X=是n≥1个拓扑空间的积空间.令T为X的拓扑,为的拓朴,i=1,2,…,n.则X以它的子集族第13页*共21页为它的一个子基.其中,对于每一个i,映射:X→是笛卡儿积X到它的第i个坐标集的投射.证明我们仅证明n=2的情形.首先注意,对于任何有根据积空间的定义,是它的一个基.令为的每一个有限非空子族之交的全体构成的集族,即由于显然有,综上我们有.明显地,是X的一个基.因此,是X的一个子基.一般情形的证明是完全类似的,留给读者自己补证定理3.2.6设X=是n≥1个拓扑空间的积空间,则对于每一个i=l,2,…,n,笛卡儿积X到它的第i个坐标集的投射:X→是一个满的连续开映射.证明显然是一个满射.对于X中每一个开集,根据定理3.2.5,是X

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功