误差函数erf

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

误差函数erf在数学中,误差函数(也称之为高斯误差函数)是一个非基本函数(即不是初等函数),其在概率论、统计学以及偏微分方程中都有广泛的应用。自变量为x的误差函数定义为:且有erf(∞)=1和erf(-x)=-erf(x)。---余补误差函数erfc(x)定义为:误差函数的导数为:等等---误差函数的重积分定义为:---且可得-误差函数的级数展开式为:高斯函数的不定积分是误差函数。在自然科学、社会科学、数学以及工程学等领域都有高斯函数的身影,这方面的例子包括:在统计学与机率论中,高斯函数是常态分布的密度函数,根据中心极限定理它是复杂总和的有限机率分布。高斯函数是量子谐振子基态的波函数。计算化学中所用的分子轨道是名为高斯轨道的高斯函数的线性组合(参见量子化学中的基组)。在数学领域,高斯函数在厄尔米特多项式的定义中起著重要作用。高斯函数与量子场论中的真空态相关。在光学以及微波系统中有高斯波束的应用。高斯函数在图像处理中用作预平滑核。

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功