过程控制课程设计加热炉炉温控制系统设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

内蒙古科技大学课程设计论文内蒙古科技大学过程控制课程设计说明书题目:加热炉炉温控制系统设计学生姓名:学号:专业:测控技术与仪器班级:2012-1指导教师:2016年9月8日内蒙古科技大学课程设计论文1目录第一章加热炉概述...................................................31.2加热炉自动控制发展与现状.....................................3第二章控制方案论证.................................................42.1加热炉控制影响因素及基本要求.................................42.2系统控制方案选择...........................................52.3系统控制参数确定.............................................52.3.1被控参数选择..........................................52.3.2控制参数选择.............................................6第三章加热炉控制基本原理及系统设计.................................63.1炉温控制基本原理.............................................63.2加热温度控制系统总体结构图...................................73.3加热炉温度单回路反馈控制系统结构框图.........................73.4加热炉串级控制系统...........................................83.5控制仪表的选型及配置........................................93.5.1测温元件...................................................93.5.2一体化温度变送器...........................................93.5.3DX2000型无纸记录仪:.......................................93.5.4调节器...................................................103.5.5执行器选型................................................113.5.6电/气阀门定位器ZPD-01....................................123.5.7安全栅....................................................123.5.8配电器...................................................123.5.9薄膜气动调节阀ZMBS-16K...................................13第四章设计总结....................................................14参考文献内蒙古科技大学课程设计论文2引言目前在我国钢铁冶金行业中,能源问题日益严峻以及企业面临越来越激烈的市场竞争,节能增效就显得尤为重要。这就需要对钢铁冶金行业中的主要耗能设备——加热炉的运行状态进行及时和准确的分析并进行优化,以提高加热炉的运行效率,达到节能降耗的目的。近年来,随着自动化程度的不断提高,轧钢加热炉燃烧控制已实现串级控制。加热炉的主要技术经济指标为加热温度和能耗两项。轧钢加热炉控制质量的好坏直接关系到经济效益,特别是炉温控制对杜绝粘钢现象,提高加热炉寿命,降低钢坯烧损、提高成材率、节能降耗、减少环境污染等具有重要意义。因此,本设计先根据加热炉结构特点设计控制系统,并介绍和比较其它相关的控制系统,选定了加热炉燃料流量控制系统,并阐述了PID控制思想应用于加热炉燃烧过程控制的情况和特点。这次设计说明书是在老师的精心指导下,参阅大量相关资料完成的。由于我的知识不够,经验不足,设计中一定还存在许多缺点,乃至错误之处,请各位老师批评指正。内蒙古科技大学课程设计论文3第一章加热炉概述1.1加热炉工艺流程对于加热炉,工艺介质受热升温或同时进行汽化,其温度的高低会直接影响后一工序的操作工况和产品质量。当炉子温度过高时,会使物料在加热炉内分解,甚至造成结焦而烧坏炉管。加热炉的平稳操作可以延长炉管使用寿命。因此,加热炉出口温度必须严加控制。加热炉是传统设备的一种,同样具有热量传递过程。热量通过金属管壁传给工艺介质,因此它们同样符合导热与对流传热的基本规律。但加热炉属于火力加热设备,首先由燃料的燃烧产生炽热的火焰和高温的气流,主要通过辐射传热将热量传给管壁,然后由管壁传给工艺介质,工艺介质在辐射室获得的热量约占总热负荷的70%-80%,而在对流段获得的热量约占热负荷的20%-30%。1.2加热炉自动控制发展与现状加热炉是轧钢生产企业中的主要耗能设备,尽量提高燃料利用率,是节能降耗需解决的主要问题。国内外冶金行业的燃料主要为焦炉、高炉混合煤气及各单一煤气,部分使用天然气,个别小型轧钢厂使用重油。计算机控制燃烧过程,就是在各种燃烧工况条件下,找到合理的最佳空燃比,使燃烧处于较佳状态,从而提高炉温控制精度,保证钢锭以较快的速度达到出钢温度,节约能源,减少氧化烧损。轧钢加热炉通常配备的是以模拟调节仪表为核心的控制系统。当燃料的热值与压力稳定时,这种控制系统的控制效果还比较好,而对于燃料的热值与压力频繁波动的情况,常规模拟仪表系统就难以达到预期目标,操作者必须经常通过“看火孔”去观察火焰,调节空燃比以改善燃烧效果。这不仅给操作者带来许多不便,而且靠人工随时调节空燃比,很难跟踪热值变化的速度,加之加热炉都需要按照加热工艺曲线进行周期性的加热,而炉子的特性是变化的,要使加热炉实现最有效的节能运行还应该考虑到进料状况(冷锭或热锭)以及轧机故障待轧的运行状态。对这些要求,模拟控制系统是难以实现的。内蒙古科技大学课程设计论文4随着检测设备、仪表、计算机水平的提高,90年代我国轧钢企业配置计算机控制的连续加热炉逐渐增多,并进行了不同程度的控制,由于各自的控制内容和使用情况不同,所得到的效果也不尽相同。目前国内在控制理论和关键技术方面的开发与国外先进国家相比差距不是很大,但在真正的应用上与欧美、日本、前苏联等冶金技术较先进国家相比差距较大。从20世纪90年代末国内许多老企业,都对加热炉进行了计算机燃烧控制方面的改造,计算机几乎全是选用进口的,检测设备、仪表部分采用国产的,新上项目大部分是整套设备进口。第二章控制方案论证2.1加热炉控制影响因素及基本要求对加热炉的出口温度、燃烧过程、联锁保护等进行的自动控制。早期加热炉的自动控制仅限控制出口温度,方法是调节燃料进口的流量。现代化大型加热炉自动控制的目标是进一步提高加热炉燃烧效率,减少热量损失。为了保证安全生产,在生产线中增加了安全联锁保护系统。出口温度控制影响加热炉出口温度的干扰因素很多,炉子的动态响应一般都比较迟缓,因此加热炉温度控制系统多选择串级和前馈控制方案。根据干扰施加点位置的不同,可组成多参数的串级控制。使用气体燃料时,可以采用浮动阀代替串级控制中的副调节器,还可以预先克服燃料气的压力波动对出口温度的影响。燃烧过程控制这种控制的主要目的是在工艺允许的条件下尽量降低过剩空气量,保证加热炉高效率燃烧。简单的控制方案是通过测量烟道气中的含氧量,组成含氧量控制系统,或设计燃料量和空气量比值调节系统,再利用含氧量信号修正比值系数。含氧量控制系统能否正常运行的关键在于检测仪表和执行机构两部分。现代工业中都趋向于用氧化锆测氧技术检测烟道气中的含氧量。应用时需要注意测量点的选择、参比气体流量和锆管温度控制等问题。加热炉燃烧控制系统中的执行机构特性往往都较差,影响系统的稳定性。一般通过引入阻尼滞后或增加非线性环节来改善控制品质。内蒙古科技大学课程设计论文5联锁保护系统在加热炉燃烧过程中,若工艺介质流量过低或中断烧嘴火焰熄灭和燃料管道压力过低,都会导致回火事故,而当燃料管道压力过高时又会造成脱火事故。为了防止事故,设计了联锁保护系统防止回火和温度压力选择性控制系统防止脱火。2.2系统控制方案选择随着控制理论的发展,越来越多的智能控制技术,如自适应控制、模型预测控制、模糊控制、神经网络等,被引入到加热炉温度控制中,改善和提高控制系统的控制品质。本加热炉温度控制系统较为简单,故采用数字PID算法作为系统的控制算法。采用PID调节器组成的PID自动控制系统调节炉温。PID调节器的比例调节,可产生强大的稳定作用;积分调节可消除静差;微分调节可加速过滤过程,克服因积分作用而引起的滞后。控制系统通过温度检测元件不断的读取物料出口温度,经过温度变送器转换后接入调节器,调节器将给定温度与测得的温度进行比较得出偏差值,然后经PID算法给出输出信号,执行器接收调节器发来的信号后,根据信号调节阀门开度,进而控制燃料流量,改变物料出口温度,实现对物料出口温度的控制。本加热炉温度控制系统采用单回路控制方案,即可实现控制要求。在运行过程中,当物料出口温度受干扰影响改变时,温度检测元件测得的模拟信号也会发生对应的改变,该信号经过变送器转换后变成调节器可分析的数字信号,进入调节器,将变动后的信号再与给定相比较,得出对应偏差信号,经PID算法计算后输出,通过执行器调节燃料流量,不断重复以上过程,直至物料出口温度接近给定,处于允许范围内,且达到稳定。由此消除干扰的影响,实现温度的控制要求。2.3系统控制参数确定2.3.1被控参数选择单回路控制系统选择被控参数时要遵循以下原则:在条件许可的情况下,首先应尽量选择能直接反应控制目的的参数为被控参数;其次要选择与控制目的有内蒙古科技大学课程设计论文6某种单值对应关系的间接单数作为被控参数;所选的被控参数必须有足够的变化灵敏度。综合以上原则,在本系统中选择物料的出口温度θ作为被控参数。该参数可直接反应控制目的。2.3.2控制参数选择工业过程的输入变量有两类:控制变量和扰动变量。其中,干扰时客观存在的,它是影响系统平稳操作的因素,而操纵变量是克服干扰的影响,使控制系统重新稳定运行的因素。而控制参数选择的基本原则为:①选择对所选定的被控变量影响较大的输入变量作为控制参数;②在以上前提下,选择变化范围较大的输入变量作为控制参数,以便易于控制;③在①的基础上选择对被控变量作用效应较快的输入变量作为控制参数,使控制系统响应较快;综合以上原则,选择燃料的流量Qg量作为控制参数。第三章加热炉控制基本原理及系统设计3.1炉温控制基本原理加热炉出口总管温度是加热炉环节最为重要的参数,出口温度的稳定对于后续工艺的生产稳定、操作平稳甚至提高收率至关重要。最简单的控制方法就是采用单回路的反馈控制。单回路反馈控制简单实用,有它的使用价值。但该方法没有考虑燃料量变化的影响,所以出口温度不容易稳定,在一定程度上也会造成燃料的浪费。在简单反馈控制方案的基础上,加入燃料量控制回路,就可以构成加热炉的串级控制系统。这种控制方案也比较简单,效果比简单控制的效果要好一些。串级控制系统也可以引入炉膛温度的控制回路来构成:出口温度控制器的输出作为炉膛温度的设定值,炉膛温度控制器的输出作为燃料量的给定值,燃料量控制器再去控制调节阀。在串级控制的基础上,再引入原油进料前馈,可以构成内蒙古科技大学课程设计论文7静态前馈控制或动态前馈控制。采用原油进料前馈控制后,在原油进料流量有变化时,控制系统能很快使燃料流量发生相应的变化,从而得到补偿,使进料流量波动对出口温度的影响较小。3.2

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功