函数1.求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)2.值域:先考虑其定义域,然后通过以下方法求解:(1)画出函数图像求解。(2)把函数变换成一次函数、二次函数、指数函数、幂函数、对数函数等,根据这些函数性质求解。(3)判断出函数单调性求解。3.函数图象画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4、对于映射f:A→B来说,则应满足:(f为:对应关系,A为:原象,B为:象)(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.6、复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。即“函数套函数”判断此类函数单调性一般是判断g(x)和f(u)的单调性,单调性相同则y为增函数,反之则为减函数。即“同增异减”一次函数一、公式为y=kx+b(x为自变量,y为因变量,k≠0)①当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)。②.当x=0时,y=b为函数在y轴上的截距。③当y=o时,x=-b/k为函数在x轴上的截距。二、图像性质。.k,b与函数图像所在象限的关系:①k0,b0时,直线必通过一、二、三象限,y随x的增大而增大;②k0,b0时,直线必通过一、三、四象限,y随x的增大而增大;③k0,b0时,直线必通过一、二、四象限,y随x的增大而减小;④k0时0,直线必通过二、三、四象限,y随x的增大而减小。⑤b=0时,直线通过原点,表示的是正比例函数的图像。密函数一、公式为y=x^a(a为任意实数)定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。1.,.2..3.4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个.5.二次函数的解析式的三种形式(1)一般式;(2)顶点式;当已知抛物线的顶点坐标时,设为此式(3)零点式;当已知抛物线与轴的交点坐标为时,设为此式4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式6.解连不等式常有以下转化形式.7.方程在内有且只有一个实根,等价于或。8.闭区间上的二次函数的最值二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a0时,若,则;,,.(2)当a0时,若,则,若,则,.9.一元二次方程=0的实根分布1方程在区间内有根的充要条件为或;2方程在区间内有根的充要条件为或或;3方程在区间内有根的充要条件为或.10.定区间上含参数的不等式恒成立(或有解)的条件依据(1)在给定区间的子区间形如,,不同上含参数的不等式(为参数)恒成立的充要条件是。(2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是。(3)在给定区间的子区间上含参数的不等式(为参数)的有解充要条件是。(4)在给定区间的子区间上含参数的不等式(为参数)有解的充要条件是。对于参数及函数.若恒成立,则;若恒成立,则;若有解,则;若有解,则;若有解,则.若函数无最大值或最小值的情况,可以仿此推出相应结论11.真值表pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假12.常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至少有两个大于不大于至少有个至多有个小于不小于至多有个至少有个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或13.四种命题的相互关系(上图):14.充要条件记表示条件,表示结论1充分条件:若,则是充分条件.2必要条件:若,则是必要条件.3充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.15.函数的单调性的等价关系(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.至多有一个指数函数一、公式为:y=a^x(a0且a≠1)(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。(2)指数函数的值域为大于0的实数集合。(3)函数图形都是下凹的。(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。(6)函数总是在某一个方向上无限趋向于X轴,永不相交。(7)函数总是通过(0,1)这点。(8)显然指数函数无界二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线反比例函数形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。自变量x的取值范围是不等于0的一切实数。反比例函数图像性质:反比例函数的图像为双曲线。由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。如图,上面给出了k分别为正和负(2和-2)时的函数图像。当K0时,反比例函数图像经过一,三象限,是减函数当K0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。(1)对数函数的定义域为大于0的实数集合。(2)对数函数的值域为全部实数集合。(3)函数总是通过(1,0)这点。(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。(5)显然对数函数无界指数函数、函数奇偶性(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。(2)指数函数的值域为大于0的实数集合。(3)函数图形都是下凹的。(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。(6)函数总是在某一个方向上无限趋向于X轴,永不相交。(7)函数总是通过(0,1)这点。(8)显然指数函数无界。