数列的概念2一、选择题1.已知数列{an}的通项公式为nnan22,那么101是它的()A.第4项B.第5项C.第6项D.第7项解析:设101是{an}中的第n项,则10122nn.解得n=4或n=-5(舍去),故选A.答案:A2.已知数列{an}的前n项和21nnSn(n∈N*),则a4等于()A.301B.341C.201D.321解析:由已知,得a4=S4-S3=3015465.答案:A3.已知Sn为数列{an}的前n项和,若Sn=2an-1,则a5的值为()A.-16B.16C.32D.-32解析:由Sn=2an-1,得Sn-1=2an-1-1,∴an=2(an-an-1),即an=2an-1.∴21nnaa.又S1=2a1-1a1=1,∴a5=a1·q4=1·24=16.答案:B4.在数列{an}中,a1=2,nan+1=(n+1)an+2(n∈N*),则a10为()A.34B.36C.38D.40解析:先取n=1,2,3,可求得a2=6,a3=10,可推出an=4n-2,从而求出a10=38.答案:C5.数列{-2n2+29n+3}中的最大项是()A.107B.108C.81108D.109解析:-2n2+29n+3=3829)429(222n,当n=7时最大,最大项为108.选B.答案:B6.由1,3,5,…,2n-1,…构成数列{an},数列{bn}满足b1=2,当n≥2时,1nbnab,则b5等于()A.17B.15C.33D.63解析:根据题意,得b2=1ba=a2=3b3=2ba=a3=5b4=3ba=a5=9b5=4ba=a9=17.答案:A7.数列{an}中,an=(-1)n+1(4n-3),其前n项和为Sn,则S22-S11等于()A.-85B.85C.-65D.65解析:S22=1-5+9-13+17-21+…-85=-44,S11=1-5+9-13+…+33-37+41=21,∴S22-S11=-65.或S22-S11=a12+a13+…+a22=a12+(a13+a14)+(a15+a16)+…+(a21+a22)=-65.答案:C8.已知数列{an}满足a1=0,1331nnnaaa(n∈N*),则a20等于()A.0B.3C.3D.23解析:∵a1=0,1331nnnaaa,∴32a,33a,a4=0,….从而可知{an}是以3为周期的数列,3220aa.答案:B9.(2009北京崇文高三第一学期期末练习,理6)若正项数列{an}满足a1=2,an+12-3an+1an-4an2=0,则数列{an}的通项an等于()A.22n-1B.2nC.22n+1D.22n-3解析:由an+12-3an+1an-4an2=0,得043)(121nnnnaaaa,解得1411nnnnaaaa或(舍去,因为an>0),故数列{an}是首项a1=2,公比q=4的等比数列.所以an=2·4n-1=22n-1.答案:A10.如果f(a+b)=f(a)·f(b)且f(1)=2,则)2003()2004()2()3()1()2(ffffff等于()A.2003B.1001C.2004D.4006解析:令a=n,b=1,f(n+1)=f(n)·f(1),∴2)1()()1(fnfnf.∴)2003()2004()2()3()1()2(ffffff=2×2003=4006.答案:D二、填空题11.已知数列{an}的首项a1=1,并且对任意n∈N*都有an>0.设其前n项和为Sn,若以(an,Sn)(n∈N*)为坐标的点在曲线)1(21xxy上运动,则数列{an}的通项公式为______.解析:由题意,得Sn=21an(an+1),∴Sn-1=21an-1(an-1+1).作差,得an=21(an2-an-12+an-an-1),即(an+an-1)(an-an-1-1)=0.∵an>0,∴an-an-1-1=0,即an-an-1=1(n≥2).∴数列{an}为首项a1=1,公差d=1的等差数列.∴an=n(n∈N*).答案:an=n(n∈N*)12.数列{an}满足,121,12,210,21nnnnnaaaaa若761a,则a2=________,a24=______.解析:∵761a,且21<76<1,∴7517622a,7317523a.又∵73<21,∴a4=2a3=76.由此推得此数列的周期为3.∴a24=a3=73.答案:757313.数列{an}中,Sn是其前n项和,若a1=1,nnSa311(n≥1),则an=_________.解析:∵3an+1=Sn,∴3an=Sn-1.两式相减,得3(an+1-an)=Sn-Sn-1=an(n≥2)341nnaan≥2时,数列{an}是以34为公比,以a2为首项的等比数列,∴n≥2时,an=a2(34)n-2.令n=1,由3an+1=Sn,得3a2=a1,又a1=1a2=31,∴2)34(31nna(n≥2),故.2,)34(31,1,12nnann答案:2,)34(31,1,12nnn14.已知a1=1,111nnaa(n≥2),则a5=____________.解析:2111112aa,232111123aa,353211134aa,585311145aa.答案:58三、解答题15.数列{an}满足211a,a1+a2+…+an=n2an,求an.解:∵Sn=n2an,∴当n≥2时,an=Sn-Sn-1=n2an-(n-1)2an-1.∴(n2-1)an=(n-1)2an-1.∴111)1(221nnnnaann.∴11,2,,64,53,42,3112145342312nnaannaaaaaaaaaannnn.上式相乘,得)1(21nnaan(n≥2).又211a,∴)1(1nnan(n≥2).∵当n=1时,211a,∴)1(1nnan.16.数列{an}中,前n项和Sn=an2+bn,其中a、b是常数,且a>0,a+b>1,n∈N*.(1)求{an}的通项公式an,并证明an+1>an>1(n∈N*);(2)令1lognnaanc,试判断数列{cn}中任意相邻两项的大小.解:(1)a1=S1=a+b>1.an=Sn-Sn-1(当n≥2时)=(an2+bn)-[a(n-1)2+b(n-1)]=2an-a+b(n=2,3,4,…).当n=1时也能满足上式,∴an=2an-a+b(n∈N*).an+1-an=2a(n+1)-a+b-(2an-a+b)=2a>0,∴an+1>an>1(n∈N*).(2)由(1)及对数的性质可得数列{an}中各项皆为正值,nnnnnnnaaaaaanannacc12111loglogloglog212)2loglog(121nnnnaaaa22)]([log411nnaaan222])2([log411nnaaan(an+2≠an)1])([log412211naan.来高考资源网(又∵an>1,∴0log1nnaanc.∴cn+1<cn(n∈N*).教学参考例题志鸿优化系列丛书【例题】有一数列{an},a1=a,由递推公式nnnaaa121写出这个数列的前4项,并根据前4项观察规律,写出该数列的一个通项公式.解:∵a1=a,nnnaaa121,∴aaa122,aaaaaaaaa3141211412223,aaaaaaaaa718314131812334.观察规律,得通项公式为yaxaan1的形式,其中x与n的关系可由n=1,2,3,4得出,即x=2n-1,而y比x小1,∴aaannn)12(1211.