高中数学必修1课后习题答案第一章集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“”或“”填空:(1)设为所有亚洲国家组成的集合,则:中国_______,美国_______,印度_______,英国_______;(2)若,则_______;(3)若,则_______;(4)若,则_______,_______.1.(1)中国,美国,印度,英国;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2).(3).(4),.2.试选择适当的方法表示下列集合:(1)由方程的所有实数根组成的集合;(2)由小于的所有素数组成的集合;(3)一次函数与的图象的交点组成的集合;(4)不等式的解集.2.解:(1)因为方程的实数根为,所以由方程的所有实数根组成的集合为;(2)因为小于的素数为,所以由小于的所有素数组成的集合为;(3)由,得,即一次函数与的图象的交点为,所以一次函数与的图象的交点组成的集合为;(4)由,得,所以不等式的解集为.1.1.2集合间的基本关系练习(第7页)1.写出集合的所有子集.1.解:按子集元素个数来分类,不取任何元素,得;取一个元素,得;取两个元素,得;取三个元素,得,即集合的所有子集为.2.用适当的符号填空:(1)______;(2)______;(3)______;(4)______;(5)______;(6)______.2.(1)是集合中的一个元素;(2);(3)方程无实数根,;(4)(或)是自然数集合的子集,也是真子集;(5)(或);(6)方程两根为.3.判断下列两个集合之间的关系:(1),;(2),;(3),.3.解:(1)因为,所以;(2)当时,;当时,,即是的真子集,;(3)因为与的最小公倍数是,所以.1.1.3集合的基本运算练习(第11页)1.设,求.1.解:,.2.设,求.2.解:方程的两根为,方程的两根为,得,即.3.已知,,求.3.解:,.4.已知全集,,求.4.解:显然,,则,.1.1集合习题1.1(第11页)A组1.用符号“”或“”填空:(1)_______;(2)______;(3)_______;(4)_______;(5)_______;(6)_______.1.(1)是有理数;(2)是个自然数;(3)是个无理数,不是有理数;(4)是实数;(5)是个整数;(6)是个自然数.2.已知,用“”或“”符号填空:(1)_______;(2)_______;(3)_______.2.(1);(2);(3).当时,;当时,;3.用列举法表示下列给定的集合:(1)大于且小于的整数;(2);(3).3.解:(1)大于且小于的整数为,即为所求;(2)方程的两个实根为,即为所求;(3)由不等式,得,且,即为所求.4.试选择适当的方法表示下列集合:(1)二次函数的函数值组成的集合;(2)反比例函数的自变量的值组成的集合;(3)不等式的解集.4.解:(1)显然有,得,即,得二次函数的函数值组成的集合为;(2)显然有,得反比例函数的自变量的值组成的集合为;(3)由不等式,得,即不等式的解集为.5.选用适当的符号填空:(1)已知集合,则有:_______;_______;_______;_______;(2)已知集合,则有:_______;_______;_______;_______;(3)_______;_______.5.(1);;;;,即;(2);;;=;;(3);菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合,求.6.解:,即,得,则,.7.设集合,,求,,,.7.解:,则,,而,,则,.8.学校里开运动会,设,,,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1);(2).8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为.(1);(2).9.设,,,,求,,.9.解:同时满足菱形和矩形特征的是正方形,即,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即,.10.已知集合,求,,,.10.解:,,,,得,,,.B组1.已知集合,集合满足,则集合有个.1.集合满足,则,即集合是集合的子集,得个子集.2.在平面直角坐标系中,集合表示直线,从这个角度看,集合表示什么?集合之间有什么关系?2.解:集合表示两条直线的交点的集合,即,点显然在直线上,得.3.设集合,,求.3.解:显然有集合,当时,集合,则;当时,集合,则;当时,集合,则;当,且,且时,集合,则.4.已知全集,,试求集合.4.解:显然,由,得,即,而,得,而,即.第一章集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1);(2).1.解:(1)要使原式有意义,则,即,得该函数的定义域为;(2)要使原式有意义,则,即,得该函数的定义域为.2.已知函数,(1)求的值;(2)求的值.2.解:(1)由,得,同理得,则,即;(2)由,得,同理得,则,即.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度与时间关系的函数和二次函数;(2)和.3.解:(1)不相等,因为定义域不同,时间;(2)不相等,因为定义域不同,.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为的圆形木头锯成矩形木料,如果矩形的一边长为,面积为,把表示为的函数.1.解:显然矩形的另一边长为,,且,即.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A)对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B)对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D)对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C)我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数的图象.3.解:,图象如下所示.4.设,从到的映射是“求正弦”,与中元素相对应的中的元素是什么?与中的元素相对应的中元素是什么?4.解:因为,所以与中元素相对应的中的元素是;因为,所以与中的元素相对应的中元素是.1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:(1);(2);(3);(4).1.解:(1)要使原式有意义,则,即,得该函数的定义域为;(2),都有意义,即该函数的定义域为;(3)要使原式有意义,则,即且,得该函数的定义域为;(4)要使原式有意义,则,即且,得该函数的定义域为.2.下列哪一组中的函数与相等?(1);(2);(3).2.解:(1)的定义域为,而的定义域为,即两函数的定义域不同,得函数与不相等;(2)的定义域为,而的定义域为,即两函数的定义域不同,得函数与不相等;(3)对于任何实数,都有,即这两函数的定义域相同,切对应法则相同,得函数与相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1);(2);(3);(4).3.解:(1)定义域是,值域是;(2)定义域是,值域是;(3)定义域是,值域是;(4)定义域是,值域是.4.已知函数,求,,,.4.解:因为,所以,即;同理,,即;,即;,即.5.已知函数,(1)点在的图象上吗?(2)当时,求的值;(3)当时,求的值.5.解:(1)当时,,即点不在的图象上;(2)当时,,即当时,求的值为;(3),得,即.6.若,且,求的值.6.解:由,得是方程的两个实数根,即,得,即,得,即的值为.7.画出下列函数的图象:(1);(2).7.图象如下:8.如图,矩形的面积为,如果矩形的长为,宽为,对角线为,周长为,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为,即,得,,由对角线为,即,得,由周长为,即,得,另外,而,得,即.9.一个圆柱形容器的底部直径是,高是,现在以的速度向容器内注入某种溶液.求溶液内溶液的高度关于注入溶液的时间的函数解析式,并写出函数的定义域和值域.9.解:依题意,有,即,显然,即,得,得函数的定义域为和值域为.10.设集合,试问:从到的映射共有几个?并将它们分别表示出来.10.解:从到的映射共有个.分别是,,,,,,,.B组1.函数的图象如图所示.(1)函数的定义域是什么?(2)函数的值域是什么?(3)取何值时,只有唯一的值与之对应?1.解:(1)函数的定义域是;(2)函数的值域是;(3)当,或时,只有唯一的值与之对应.2.画出定义域为,值域为的一个函数的图象.(1)如果平面直角坐标系中点的坐标满足,,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点和点不能在图象上;(2)省略.3.函数的函数值表示不超过的最大整数,例如,,.当时,写出函数的解析式,并作出函数的图象.3.解:图象如下4.如图所示,一座小岛距离海岸线上最近的点的距离是,从点沿海岸正东处有一个城镇.(1)假设一个人驾驶的小船的平均速度为,步行的速度是,(单位:)表示他从小岛到城镇的时间,(单位:)表示此人将船停在海岸处距点的距离.请将表示为的函数.(2)如果将船停在距点处,那么从小岛到城镇要多长时间(精确到)?4.解:(1)驾驶小船的路程为,步行的路程为,得,,即,.(2)当时,.第一章集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午天气越来越暖,中午时分一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山才又开始转凉.画出这一天期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下是递增区间,是递减区间,是递增区间,是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在上是减函数,在上是增函数,在上是减函数,在上是增函数.4.证明函数在上是减函数.4.证明:设,且,因为,即,所以函数在上是减函数.5.设是定义在区间上的函数.如果在区间上递减,在区间上递增,画出的一个大致的图象,从图象上可以发现是函数的一个.5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1);(2)(3);(4).1.解:(1)对于函数,其定义域为,因为对定义域内每一个都有,所以函数为偶函数;(2)对于函数,其定义域为,因为对定义域内每一个都有,所以函数为奇函数;(3)对于函数,其定义域为,因为对定义域内每一个都有,所以函数为奇函数;(4)对于函数,其定义域为,因为对定义域内每一个都有,所以函数为偶函数.2.已知是偶函数,是奇函数,试将下图补充完整.2.解:是偶函数,其图象是关于轴对称的;是奇函数,其图象是关于原点对称的.习题1.3A组1.画出下列函数的图象,并根据图象说出函数的单调区间,以及在各单调区间上函数是增函数还是减函数.(1);(2).1.解:(1)函数在上递减;函数在上递增;(2)函数在上递增;函数在上递减.2.证明:(1)函数在上是减函数;(2)函数在上是增函数.2.证明:(1)设,而,由,得,即,所以函数在上是减函数;(2)设,而,由,得,即,所以函数在上是增函数.3.探究一次函数的单调性,并证明你的结论.3.解:当时,一次函数在上是增函数;当时,一次函数在上是减函数,令,设,而,当时,,即,得一次函数在上是增函数;当时,,即,得一次函数在上是减函数.4.一