高一数学必修4三角函数恒等变换强化练习(人教版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.已知函数2π()sin3sinsin2fxxxx(0)的最小正周期为π.(Ⅰ)求的值;(Ⅱ)求函数()fx在区间2π03,上的取值范围.2.已知函数()cos(2)2sin()sin()344fxxxx(Ⅰ)求函数()fx的最小正周期和图象的对称轴方程(Ⅱ)求函数()fx在区间[,]122上的值域3.已知函数f(x)=)0,0)(cos()sin(3πxx为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为.2π(Ⅰ)求f(8π)的值;(Ⅱ)将函数y=f(x)的图象向右平移6π个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.1.已知0,1413)cos(,71cos且2,(Ⅰ)求2tan的值.(Ⅱ)求.2.已知函数223sin23sincos5cosfxxxxx.求函数fx的周期和最大值;已知5f,求tan的值.3.若3sin23cos3sin32)(2xxxxf],0[x,求)(xf的值域和对称中心坐标;1新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆已知sinsinsin0,coscoscos0,求cos()的值新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆2新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆若,22sinsin求coscos的取值范围新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆3新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆求值:0010001cos20sin10(tan5tan5)2sin204新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆已知函数.,2cos32sinRxxxy(1)求y取最大值时相应的x的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sinRxxy的图象新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆1新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆解:sinsinsin,coscoscos,22(sinsin)(coscos)1,122cos()1,cos()2新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆2新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆解:令coscost,则2221(sinsin)(coscos),2t221322cos(),2cos()22tt22317141422,,22222ttt3新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆解:原式2000000002cos10cos5sin5sin10()4sin10cos10sin5cos5000000cos10cos102sin202cos102sin102sin100000000000cos102sin(3010)cos102sin30cos102cos30sin102sin102sin1003cos3024新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆解:sin3cos2sin()2223xxxy(1)当2232xk,即4,3xkkZ时,y取得最大值|4,3xxkkZ为所求(2)2sin()2sin2sin232xxyyyx右移个单位横坐标缩小到原来的2倍3sinyx纵坐标缩小到原来的2倍3.(北京卷15).(本小题共13分)已知函数2π()sin3sinsin2fxxxx(0)的最小正周期为π.(Ⅰ)求的值;(Ⅱ)求函数()fx在区间2π03,上的取值范围.解:(Ⅰ)1cos23()sin222xfxx311sin2cos2222xxπ1sin262x.因为函数()fx的最小正周期为π,且0,所以2ππ2,解得1.(Ⅱ)由(Ⅰ)得π1()sin262fxx.因为2π03x≤≤,所以ππ7π2666x≤≤,所以1πsin2126x≤≤,因此π130sin2622x≤≤,即()fx的取值范围为302,.4.(安徽卷17).(本小题满分12分)已知函数()cos(2)2sin()sin()344fxxxx(Ⅰ)求函数()fx的最小正周期和图象的对称轴方程(Ⅱ)求函数()fx在区间[,]122上的值域解:(1)()cos(2)2sin()sin()344fxxxx13cos2sin2(sincos)(sincos)22xxxxxx2213cos2sin2sincos22xxxx13cos2sin2cos222xxxsin(2)6x2T2周期∴由2(),()6223kxkkZxkZ得∴函数图象的对称轴方程为()3xkkZ(2)5[,],2[,]122636xx因为()sin(2)6fxx在区间[,]123上单调递增,在区间[,]32上单调递减,所以当3x时,()fx取最大值1又31()()12222ff,当12x时,()fx取最小值32所以函数()fx在区间[,]122上的值域为3[,1]25.(山东卷17)(本小题满分12分)已知函数f(x)=)0,0)(cos()sin(3πxx为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为.2π(Ⅰ)求f(8π)的值;(Ⅱ)将函数y=f(x)的图象向右平移6π个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.解:(Ⅰ)f(x)=)cos()sin(3xx=)cos(21)sin(232xx=2sin(x-6π)因为f(x)为偶函数,所以对x∈R,f(-x)=f(x)恒成立,因此sin(-x-6π)=sin(x-6π).即-sinxcos(-6π)+cosxsin(-6π)=sinxcos(-6π)+cosxsin(-6π),整理得sinxcos(-6π)=0.因为>0,且x∈R,所以cos(-6π)=0.又因为0<<π,故-6π=2π.所以f(x)=2sin(x+2π)=2cosx.由题意得.2,222 =  所以  故f(x)=2cos2x.因为.24cos2)8(f(Ⅱ)将f(x)的图象向右平移个6个单位后,得到)6(xf的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到)64(f的图象.).32(cos2)64(2cos2)64()(ffxg所以    当2kπ≤32≤2kπ+π(k∈Z),即4kπ+≤32≤x≤4kπ+38(k∈Z)时,g(x)单调递减.1.已知0,1413)cos(,71cos且2,(Ⅰ)求2tan的值.(Ⅱ)求.3.已知函数223sin23sincos5cosfxxxxx.(Ⅰ)求函数fx的周期和最大值;(Ⅱ)已知5f,求tan的值.5.若3sin23cos3sin32)(2xxxxf(1)],0[x,求)(xf的值域和对称中心坐标;1.解:(Ⅰ)由1cos,072,得22143sin1cos177∴sin437tan43cos71,于是222tan24383tan21tan47143(Ⅱ)由02,,得02又∵13cos14,∴221333sin1cos11414由得:coscoscoscossinsin113433317147142所以33解:(Ⅰ)223sin23sincos5cosfxxxxx3sin2cos24xx=π2sin(2)46x.∴周期为22,最大值为6(Ⅱ)由5f,得223sin23sincos5cos5.∴1cos21cos233sin25522.∴3sin2cos21,即3sin21cos2223sincos2sinsin03或tan,∴tan0tan3或.5解:(1)1)632sin(2)(xxf],0[x]65,6[632x∴当kx632∴]1,0[)(xf423kx,对称中心)1,423(kZk

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功