控制理论实验报告线性定常系统的串联校正

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实验报告课程名称:控制理论(乙)指导老师:成绩:__________________实验名称:线性定常系统的串联较正实验类型:______________同组学生姓名:__________一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1.通过实验,理解所加校正装置的结构、特性和对系统性能的影响;2.掌握串联校正几种常用的设计方法和对系统的实时调试技术。二、实验设备1.THBDC-2型控制理论·计算机控制技术实验平台;2.PC机一台(含“THBDC-2”软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线。三、实验内容1.观测未加校正装置时系统的动、静态性能;2.按动态性能的要求,分别用时域法或频域法(期望特性)设计串联校正装置;3.观测引入校正装置后系统的动、静态性能,并予以实时调试,使之动、静态性能均满足设计要求;4.利用上位机软件,分别对校正前和校正后的系统进行仿真,并与上述模拟系统实验的结果相比较。四、实验原理图6-1为一加串联校正后系统的方框图。图中校正装置Gc(S)是与被控对象Go(S)串联连接。图6-1加串联校正后系统的方框图串联校正有以下三种形式:1)超前校正,这种校正是利用超前校正装置的相位超前特性来改善系统的动态性能。2)滞后校正,这种校正是利用滞后校正装置的高频幅值衰减特性,使系统在满足稳态性能的前提下又能满足其动态性能的要求。3)滞后超前校正,由于这种校正既有超前校正的特点,又有滞后校正的优点。因而它适用系统需要同时改善稳态和动态性能的场合。校正装置有无源和有源二种。基于后者与被控对象相连接时,不存在着负载效应,故得到广泛地应用。下面介绍两种常用的校正方法:零极点对消法(时域法;采用超前校正)和期望特性校正法(采用滞后校正)。1.零极点对消法(时域法)所谓零极点对消法就是使校正变量Gc(S)中的零点抵消被控对象Go(S)中不希望的极点,以使系统的动、静态性能均能满足设计要求。设校正前系统的方框图如图6-2所示。图6-2二阶闭环系统的方框图1.1性能要求静态速度误差系数:KV=251/S,超调量:2.0P;上升时间:StS1。1.2校正前系统的性能分析校正前系统的开环传递函数为:)15.0(25)15.0(2.05)(0SSSSSG系统的速度误差系数为:25)(lim00SSGKSV,刚好满足稳态的要求。根据系统的闭环传递函数222200250250)(1)()(nnnSSSSSGSGS求得50n,22n,14.05011n代入二阶系统超调量P的计算公式,即可确定该系统的超调量P,即63.021eP,sn3t3s(0.05)这表明当系统满足稳态性能指标KV的要求后,其动态性能距设计要求甚远。为此,必须在系统中加一合适的校正装置,以使校正后系统的性能同时满足稳态和动态性能指标的要求。1.3校正装置的设计根据对校正后系统的性能指标要求,确定系统的和n。即由212.0eP,求得5.0)05.0(13Stns,解得65.03n根据零极点对消法则,令校正装置的传递函数115.0)(TSSSGC则校正后系统的开环传递函数为:)1(25)15.0(25115.0)()()(0TSSSSTSSSGSGcSG相应的闭环传递函数222222/25//2525251)()()(nnnSSTTSSTSTSSGSGS于是有:Tn252,Tn12为使校正后系统的超调量%20P,这里取%)3.16(5.0P,则TT1255.02,T0.04s。这样所求校正装置的传递函数为:104.015.0)(SSSGo设校正装置GC(S)的模拟电路如图6-3或图6-4(实验时可选其中一种)所示。图6-3校正装置的电路图1图6-4校正装置的电路图2其中图6-3中4.7uF=C10K,=R400K,=R200K,=R=R3142时S04.0107.41010=CRT6335.0107.44002000400002000642434232CRRRRRRRR则有104.015.011)(342434232142SSCSRCSRRRRRRRRRRRSGo而图6-4中KR5101,uFC11,KR3902,uFC1.02时有104.015.01039.0151.011)(2211SSSSSCRSCRSGo图6-5(a)、(b)分别为二阶系统校正前、后系统的单位阶跃响应的示意曲线。(a)(P约为63%)(b)(P约为16.3%)图6-5加校正装置前后二阶系统的阶跃响应曲线2.期望特性校正法根据图6-1和给定的性能指标,确定期望的开环对数幅频特性L(),并令它等于校正装置的对数幅频特性Lc()和未校正系统开环对数幅频特性Lo()之和,即L()=Lc()+Lo()当知道期望开环对数幅频特性L()和未校正系统的开环幅频特性L0(),就可以从Bode图上求出校正装置的对数幅频特性Lc(ω)=L(ω)-Lo(ω)据此,可确定校正装置的传递函数,具体说明如下:设校正前系统为图6-6所示,这是一个0型二阶系统。图6-6二阶系统的方框图其开环传递函数为:)12.0)(1(2)1)(1()(21210SSSTSTKKSG,其中11T,2.0T2,1K1,2K2,K=K1K2=2。则相应的模拟电路如图6-7所示。图6-7二阶系统的模拟电路图由于图6-7是一个0型二阶系统,当系统输入端输入一个单位阶跃信号时,系统会有一定的稳态误差。2.1设校正后系统的性能指标如下:系统的超调量:%10P,速度误差系数2vK。后者表示校正后的系统为I型二阶系统,使它跟踪阶跃输入无稳态误差。2.2设计步骤2.2.1绘制未校正系统的开环对数幅频特性曲线,由图6-6可得:220)5(1lg20)1(1lg202lg20)(L其对数幅频特性曲线如图6-8的曲线0L(虚线)所示。2.2.2根据对校正后系统性能指标的要求,取%10%3.4P,25.2vK,相应的开环传递函数为:)2.01(5.2)(SSSG,其频率特性为:)51(5.2)(jjjG据此作出)(L曲线(5,5.21CVK),如图6-8的曲线L所示。2.2.3求)(SGc因为)()()(SGSGSGoc。所以SSSSSSSGSGSGoc)1(25.12)2.01)(1()2.01(5.2)()()(由上式表示校正装置)(SGc是PI调节器,它的模拟电路图如图6-9所示。图6-8二阶系统校正前、校正后的幅频特性曲线图6-9PI校正装置的电路图由于SSKCSRCSRRRSUSUSGioc111)()()(1212其中取R1=80K(实际电路中取82K),R2=100K,C=10uF,则12CRs,25.112RRK校正后系统的方框图如图6-10所示。图6-10二阶系统校正后的方框图图6-11(a)、(b)分别为二阶系统校正前、后系统的单位阶跃响应的示意曲线。(a)(稳态误差为0.33)(b)(P约为4.3%)图6-11加校正装置前后二阶系统的阶跃响应曲线五、实验步骤及结果1.零极点对消法(时域法)进行串联校正1.1校正前根据图6-2二阶系统的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如图6-12所示。图6-12二阶闭环系统的模拟电路图(时域法)电路参考单元为:U7、U9、U11、U6在r输入端输入一个单位阶跃信号,用上位机软件观测并记录相应的实验曲线,并与理论值进行比较。实验测量结果如图测得p0.641测得ts=2.4s理论值63.021eP,sn3t3s(0.05)1.2校正后在图6-12的基础上加上一个串联校正装置(见图6-3),如图6-13所示。图6-13二阶闭环系统校正后的模拟电路图(时域法)电路参考单元为:U7、U2、U9、U11、U6其中4.7uF=C10K,=R390K),400K(=R200K,=R=R3142实际取。在系统输入端输入一个单位阶跃信号,用上位机软件观测并记录相应的实验曲线,并与理论值进行比较,观测P是否满足设计要求。测得最大超调量p0.192理论值16.3%测得ts=0.207s性能要求:静态速度误差系数KV=251/s,超调量2.0P,上升时间St1s。故校正后系统符合系统要求2.期望特性校正法2.1校正前根据图6-6二阶系统的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如图6-14所示。图6-14二阶闭环系统的模拟电路图(频域法)电路参考单元为:U7、U9、U11、U6在系统输入端输入一个单位阶跃信号,用上位机软件观测并记录相应的实验曲线,并与理论值进行比较。实验测量结果如图稳态误差0.351,理论值0.33,测量值与理论值相近2.2校正后在图6-14的基础上加上一个串联校正装置(见图6-9),校正后的系统如图6-15所示。图6-15二阶闭环系统校正后的模拟电路图(频域法)注:80K电阻在实际电路中阻值取的是82K。电路参考单元为:U7、U12、U9、U11、U6在系统输入端输入一个单位阶跃信号,用上位机软件观测并记录相应的实验曲线,并与理论值进行比较,观测P和st是否满足设计要求。实验测量结果如图测得系统超调量-0.044原性能指标:系统的超调量%10P,速度误差系数2vK。故校正后系统符合性能指标七、实验心得与思考题这次的串联校正实验,加深了对理论知识的理解,通过对实验结果的分析,对相角裕度、截止频率等性能指标有了更加直观的认识,学习了如何根据性能指标来确定一个系统需要采用哪种校正方法以达到性能要求,对自己很有帮助。1.加入超前校正装置后,为什么系统的瞬态响应会变快?加入超前校正环节,可以利用其相位超前特性增大系统的相位裕度,改变系统的开环频率特性,加快系统的瞬态响应。2.什么是超前校正装置和滞后校正装置,它们各利用校正装置的什么特性对系统进行校正?超前校正装置是利用超前网络或PD控制器进行串联校正的装置,通过加入超前校正环节,利用相位超前特性来增大系统的相位于都,改变系统开环频率特性。滞后校正装置是利用滞后网络或PI控制器进行串联校正的装置,通过加入滞后校正环节,利用其低通滤波特性,在不影响校正后系统低频特性的情况下,使校正后系统的高频段增益降低,从而使穿越频率前移,达到增加系统相位裕度的目的。3.实验时所获得的性能指标为何与设计确定的性能指标有偏差?实验所得的性能指标与设计确定的性能指标有所偏差,主要在于选取元件大小上与理论计算出来的不同,造成系统性能和设计有所差异。

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功