赵坚顾静相微积分初步第一章练习解答

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1赵坚顾静相微积分初步第一章练习解答课本P.11练习1.1习题解答1、求下列函数的定义域(1)5xy(2))4ln(xy解:05x解:04x5x4x定义域:),5[定义域:)4,((3)1412xxy(4)24)1lg(1xxy解:01042xx解:040)1(1012xxgx122xxx或2201xxx定义域:定义域:),2()2,1()1,0()0,2[2、已知11)(xxxf,求)0(f,)2(f,)1(xf,)1(xf,))((xff解:1)0(f3)2(f21)1(1)1()1(xxxxxfxxxxxf111111)1(xxxxxxxxxxxfxfxff22)1()1()1()1(1111111)(1)())((3、已知函数93,531,13)(2xxxxxf求:)(xf的定义域,及函数值)0(f,)1(f,)4(f,))1((ff2解:)(xf的定义域为:)9,1(110)0(f413)1(f145)4(f1)4())1((fff4、判别下列函数的奇偶性:(1)242xxy(2)xxysin解:∵24)(2)()(xxxy解:∵)sin()()(xxxyyxx242yxxsin∴242xxy是偶函数∴xxysin是偶函数(3)2xxeey(4)13xy解:∵2)()(xxeexy解:1)()(3xxy2xxee13xyeexx2∵yxyyxy)()(且∴2xxeey是奇函数∴13xy是非奇非偶函数5、下列函数可以看成由哪些简单函数复合而成?(1)43xyxy1sin)2(2解:uy解:2uy,vusin43xuxv1(3))1cos(lg2xy(4)xytan2解:uylg,vucos,12xv解:uy2,vutan,xv3课本P.20练习1.2习题解答1、判断下列数列是否收敛(1)13,24,35,┅,nn2,┅解:∵12limnnn∴数列nn2是收敛的(2)1,4,9,16,┅,2n,┅解:∵2limnn,不是一个常数∴数列2n是发散的2、分析下列函数的变化趋势,并求极限(1))(12xxy(2))0(21xyx解:01lim2xx解:02lim10xx(3))0(cosxxy解:1coslim0xx3、设函数xxxf)(,求)(xf在0x处的左、右极限,并讨论)(xf在0x处是否有极限存在解:左极限:1)1(limlimlim)(lim0000xxxxxxxxxf右极限:11limlimlim)(lim0000xxxxxxxxxf因为)(xf在0x处的左、右极限不相等所以)(xf在0x处的极限不存在4、当0x时,下列变量中哪些是无穷小量:x3,x100000,xx5cos答:x100000和xx5cos当0x时是无穷小量45、计算下列极限(1))56(lim22xxx(2)232lim220xxxxx解:)56(lim22xxx解:232lim220xxxxx115124122(3)659lim223xxxx(4)232lim222xxxxx解:659lim223xxxx解:232lim222xxxxx)3)(2()3)(3(lim3xxxxx)2)(1()2)(1(lim2xxxxx23lim3xxx11lim2xxx616313(5)xxx11lim0(6)xxx39lim9解:xxx11lim0解:xxx39lim9)11()11)(11(lim0xxxxx)3)(3()3)(9(lim9xxxxx)11(lim0xxxxxxxx9)3)(9(lim921111lim0xx633)3(lim9xx6、计算下列极限(1)xxx5sin4tanlim0(2))2tan1sin(lim0xxxxx解:xxx5sin4tanlim0xxxx5sin4cos4sinlim0解:)2tan1sin(lim0xxxxx5xxxxxxxx55sinlim44sinlim4cos1lim54000xxxxxxx2cossinlim1sinlim005421cos1limsinlim2100xxxxx(3)xxx2sin11lim0(4)6)3sin(lim23xxxx解:xxx2sin11lim0)3)(2()3sin(lim3xxxx)11(2sin)11)(11(lim0xxxxx21lim)3()3sin(lim33xxxxx)11(2sinlim0xxxx511111lim2sin2lim2100xxxxx514121121课本P.24练习1.3习题解答1、设函数0sin001sin)(xxxxaxbxxxf,问:(1)当a,b为何值时,)(xf在0x处有极限存在?(2)当a,b为何值时,)(xf在0x处连续?解:bbbxxbxxxxx0lim1sinlim)1sin(lim00011sinlim0xxxaf)0((1)若)(xf在0x处有极限存在则)1sin(lim0bxxxxxxsinlim0所以1b所以当1b,且a为任意值时,)(xf在0x处有极限存在6(2)若)(xf在0x处连续则)1sin(lim0bxxxxxxsinlim0)0(f所以1ba所以当1ba时,)(xf在0x处连续2、求下列函数的连续区间和间断点:(1)112)(2xxxxf(2)22224)(2xxxxxf解:间断点1x解:∵24lim)(lim222xxxfxx连续区间:2)2)(2(lim2xxxx),1()1,()2(4)2(lim2fxx∴间断点为2x连续区间),2()2,(

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功