遗传算法的0-1背包问题(c语言)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

基于遗传算法的0-1背包问题的求解摘要:一、前言组合优化问题的求解方法研究已经成为了当前众多科学关注的焦点,这不仅在于其内在的复杂性有着重要的理论价值,同时也在于它们能在现实生活中广泛的应用。比如资源分配、投资决策、装载设计、公交车调度等一系列的问题都可以归结到组合优化问题中来。但是,往往由于问题的计算量远远超出了计算机在有效时间内的计算能力,使问题的求解变为异常的困难。尤其对于NP完全问题,如何求解其最优解或是近似最优解便成为科学的焦点之一。遗传算法已经成为组合优化问题的近似最优解的一把钥匙。它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题,其计算复杂度为)2(On,传统上采用动态规划来求解。设w[i]是经营活动i所需要的资源消耗,M是所能提供的资源总量,p[i]是人们经营活动i得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。二、问题描述背包问题(KnapsackProblem)的一般提法是:已知n个物品的重量(weight)及其价值(或收益profit)分别为0iw和0ip,背包的容量(contain)假设设为0ic,如何选择哪些物品装入背包可以使得在背包的容量约束限制之内所装物品的价值最大?该问题的模型可以表示为下述0/1整数规划模型:目标函数:niiinxcxxxf121),,(max),2,1(}1,0{t.s1nixpxwiniiii(*)式中ix为0-1决策变量,1ix时表示将物品i装入背包中,0ix时则表示不将其装入背包中。三、求解背包问题的一般方法解决背包问题一般是采取动态规划、递归回溯法和贪心方法。动态规划可以把困难得多阶段决策变换为一系列相互联系比较容易的单阶段问题。对于背包问题可以对子过程用枚举法求解,而且约束条件越多,决策的搜索范围越小,求解也越容易。它的主要缺点是用数值方法求解时会随着状态变量的个数呈指数级的增长,往往对于求解背包问题的实际问题是不现实的。使用递归回溯法解决背包问题的优点在于它算法思想简单,而且它能完全遍历搜索空间,肯定能找到问题的最优解;但是由于此问题解的总组合数有n2个,因此,随着物件数n的增大,其解的空间将以n2级增长,当n大到一定程度上,用此算法解决背包问题将是不现实的。使用贪心方法求解时计算的复杂度降低了很多,但是往往难以得到最优解,有时所得解与最优解相差甚远。因此,我们可以探索使用遗传算法解决物件数较大的背包问题。四、遗传算法简介遗传算法(GeneticAlgorithms,GA)是在1975年首次由美国密西根大学的D。J。Holland教授和他的同事们借鉴生物界达尔文的自然选择法则和孟德尔的遗传进化机制基础之上提出的。经过近30年的研究、应用,遗传算法已被广泛地应用于函数优化、机器人系统、神经网络学习过程、模式识别、图象处理、工业优化控制等领域。遗传算法是将问题的每一个可能性解看作是群体中的一个个体(染色体),并将每一个染色体编码成串的形式,再根据预定的目标函数对每个个体进行评价,给出一个适应值。算法将根据适应度值进行它的寻优过程,遗传算法的寻优过程是通过选择、杂交和变异三个遗传算子来具体实现的。它的搜索能力由选择算子和杂交算子决定,变异算子则保证了算法能够搜索到问题空间的尽可能多的点,从而使其具有搜索全局最优的能力。遗传算法的高效性和强壮性可由Holland提出的模式定理(SchemaTherem)和隐式并行性得以解释。在遗传算法中,定义长度较短、低阶且适应值超过平均适应值的模式在群体中数目的期望值按指数递增,这个结论称为遗传算法的基本定理。遗传算法是通过定义长度短、确定位数少、适应度值高的模式的反复抽样、组合来寻找最佳点,称这些使遗传算法有效工作的模式为积木块,是遗传算法构造答案的基本材料。但归根到底,要使遗传算法有效工作必须按照遗传算法的模式定理(或积木块假设)根据具体问题设计合理的编码方案。在运行遗传算法程序时,需要对一些参数作事先选择,它们包括种群的大小、染色体长、交叉率、变异率、最大进化代数等,这些参数对GA的性能都有很重要的影响。在试验中参数一般选取如下:种群大小N=20~100,交叉概率cp=0.4~0.9,变异概率mp=0.001~0.1,最大进化代数maxgen=100~500。遗传算法是具有“生成+检测”的迭代过程的搜索算法。它的基本处理流程如图1所示。图1、遗传算法的基本流程遗传算法的基本流程描述如下:初始化种群评估种群中个体适应度选择编码交叉变异演化(1)编码:将解空间的解数据进行二进制编码,表达为遗传空间的基因型串(即染色体)结构数据,如将数据9编码为“1001”;(2)初始化种群:定义整数pop_size作为染色体的个数,并且随机产生pop_size个染色体作为初始种群;(3)评估种群中个体适应度:评价函数对种群中的每个染色体(chromosome)求得其个体适应度)(fitnessfi;(4)选择:选择把当前群体中适应度较高的个体按某种规则或者模型遗传到下一代种群中,这里所用的规则是:染色体在种群中被选择的可能性与其个体的适应度的大小成正比;(5)交叉:定义参数cp作为交叉操作的概率,由(4)选择得到的两个个体以概率cp交换各自的部分染色体,得到新的两个个体;(6)变异:定义参数mp作为变异操作的概率,由(5)得到每个个体中的每个基因值都以概率mp进行变异;(7)演化:经过选择、交叉和变异操作,得到一个新的种群,对上述步骤经过给定的循环次数(maxgen)的种群演化,遗传算法终止。五、背包问题的遗传算法求解描述基于背包问题的模型(*),我们设计了针对于背包问题的染色体编码方法:将待求解的各量X表示成长为n的二进制字符串]j[x,j=1,2,…,n。0]j[x表示物体j不放入背包内,1]j[x表示物体j放入背包内。例如:111001100…000111代表一个解,它表示将第1、2、3、6、7…n-2,n-1,n号物体放入背包中,其它的物体则不放入。根据遗传算法的基本流程,我们确定了求解背包问题的遗传算法:步骤1、初始化过程1.1确定种群规模popsize、杂交概率cp、变异概率mp、染色体长度lchrom及最大进化代数maxgen;1.2读入背包问题的相关信息,如每个物体的重量weight[j]、每个物体的收益profit[j]和背包的容量contain,其中1)lchrom(,1,0j;1.3取1)lchrom(,1,0j)1,0(u]j[x,其中)1,0(u表示0-1整数的均匀分布函数,即随机地生成数0或1,生成的]j[x串即可看为一个染色体个体。若不满足模型(*)的约束条件,则拒绝接受,由1.2重新生成一个新的染色体个体chrom;如果产生的染色体可行,则接受它作为种群的一名成员,经过有限次的1.2抽样后,得到popsize个可行的染色体chrom,形成新的种群。1.4置种群的代数gen=0;步骤2、计算种群中个体适应度以及统计种群适应度情况2.1按照下列公式计算种群中个体适应度:)1(1lchrom0j]j[chrom*]j[weightweight;)2(containifweight)containweight(*alpha]j[chrom*]j[profitcontainifweight]j[chrom*]j[profitfitness1lchrom0j1lchrom0j公式(2)的下半部分即为适应度的惩罚函数,其中参数1.0alpha。2.2按公式(3)计算种群的总体适应度,)3(]i[fitnesssumfitness1popsize0i并且按照排序的方法统计出种群中的最大、最小适应度的染色体个体,分别标记为maxpop、minpop;步骤3、选择操作3.1生成一个随机数rand_Number,要求1_0Nuberrand;3.2按照赌轮法选择个体,赌轮法的算法描述如下:intselection(){i=0;//个体的编号sum=0;//部分个体适应度的累加和//根据随机数和群体的总适应度确定赌轮的位置wheel-pos=rand_Number*sufitness;whilesumwheel-pos&&i=popsize{i=i+1;sum=sum+fitness[i];//fitness为第i个个体的适应度}returni-1;//选择了个体i-1}3.3重复两次操作3.1、3.2,生成两个个体作为交叉操作的父代;步骤四、交叉操作4.1根据事先定义好的交叉概率cp,为了确定是否进行交叉操作,则生成[0,1]的随机数pp,若cppp,则进行4.2交叉操作,否则将两个父代保留为下一代的两个个体;4.2随机生成]1lchrom,[0的整数作为交叉点,对两个父代个体交叉生成新的两个个体;4.3重复pop_size/2次4.1、4.2便可生成pop_size个个体组成新的种群;步骤五、变异操作5.1根据事先定义好的变异概率mp,为了确定新种群上的每个个体上的每个基因是否进行变异操作,则生成[0,1]的随机数pp,若mppp,则进行5.2变异操作,否则基因不变异;5.2基因变异操作为原基因若为1,则新基因则变异为0,若原基因为0,则新基因变异为0;步骤6、演化6.1按步骤2的方法计算新种群的个体适应度和总体适应度情况,尤其是找出新种群中最大适应度的个体和最小适应度的个体;6.2若旧种群的最大个体适应度〉新种群的最大个体适应度,把旧种群的最大适应度的个体代替新种群中的最小适应度的个体,否则进行6.3;6.3种群的代数gen=genm+1,若gen〉Maxgen,则结束种群的演化,否则转到步骤2。六、遗传算法求解的实现1、遗传算法的主要参数#definepopsize80//种群的规模#definepc0.7//杂交概率#definepm0.1//变异概率#definelchrom50//染色体长度#definemaxgen5000//最大进化代数doublealpha;//计算适应度时使用的惩罚函数系数2、数据结构(1)背包信息://背包问题中物体重量、收益、背包容量intweight[lchrom],profit[lchrom],contain;(2)种群个体结构体structpopulation{unsignedintchrom[lchrom];//染色体doublefitness;//适应度unsignedintparent1,parent2,cross;//双亲、交叉点};(3)父代种群和新生代种群//父代种群、新生代种群structpopulationoldpop[popsize],newpop[popsize];//pop_size为种群大小(4)适应度信息//种群的总适应度、最小、最大适应度doublesumfitness,minfitness,maxfitness;//一个种群中最大和最小适应度的个体编号intminpop,maxpop;3、主要函数说明(1)、intread_infor()功能:从文件knapsack.txt中读出背包信息(物体重量、收益、背包容量);参数:无;返回值:返回读取文件信息是否正确;流程图:见图2。图2、read_infor()流程图(2)doublecal_fit(unsignedint*chr)功能:种群中个体适应度计算;参数:unsignedint*chr是染色体个体的指针,根据指针所指向的染色体计算个体的适应度;返回值:染色体个体适应度的大小;流程图:见图3。获取文件指针成功返回是否打开文件读出物体重量信息读出物体收益信息读出背包容量信息图3、函数cal_fit的流程图(3)、voidstatistics(structpopul

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功