选修1-1教案3.2.1常见函数的导数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

课题:3.2.1常见函数的导数一、教学目标:掌握初等函数的求导公式;二、教学重难点:用定义推导常见函数的导数公式.一、复习1、导数的定义;2、导数的几何意义;3、导函数的定义;4、求函数的导数的流程图。(1)求函数的改变量)()(xfxxfy奎屯王新敞新疆(2)求平均变化率xxfxxfxy)()(奎屯王新敞新疆(3)取极限,得导数/y=()fxxyx0lim奎屯王新敞新疆本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。(1)、y=x(2)、y=x2(3)、y=x3问题:1xy,2xy,3xy呢?问题:从对上面几个幂函数求导,我们能发现有什么规律吗?二、新授1、基本初等函数的求导公式:⑴()kxbk(k,b为常数)⑵0)(C(C为常数)⑶()1x⑷2()2xx⑸32()3xx⑹211()xx⑺1()2xx由⑶~⑹你能发现什么规律?⑻1()xx(为常数)⑼()ln(01)xxaaaaa,⑽aa11(logx)loge(01)xxlnaaa,且⑾xxe)(e⑿x1)(lnx⒀cosx)(sinx⒁sinx)(cosx-从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。例1、求下列函数导数。(1)5xy(2)xy4(3)xxxy(4)xy3log(5)y=sin(2+x)(6)y=sin3(7)y=cos(2π-x)(8)y=(1)f例2:已知点P在函数y=cosx上,(0≤x≤2π),在P处的切线斜率大于0,求点P的横坐标的取值范围。例3.若直线yxb为函数1yx图象的切线,求b的值和切点坐标.变式1.求曲线y=x2在点(1,1)处的切线方程.总结切线问题:找切点求导数得斜率变式2:求曲线y=x2过点(0,-1)的切线方程变式3:求曲线y=x3过点(1,1)的切线方程变式4:已知直线1yx,点P为y=x2上任意一点,求P在什么位置时到直线距离最短.三、小结(1)基本初等函数公式的求导公式(2)公式的应用

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功