1《新课标》高三生物(人教版)第二轮专题讲座第九讲现代生物技术本讲内容本讲内容包括(人教版)选修三《现代生物科技专题》全册,包括五个专题:专题1基因工程、专题2细胞工程、专题3胚胎工程、专题4生物技术的安全性和伦理问题、专题5生态工程等。一高考预测现代生物技术作为当前科学研究中发展最快、最前沿的科学,其许多科技进展,一直都是社会关注的热点,也是高考热点。本专题一方面与各必修专题内容关系密切,另一方面与工农业生产、医药卫生、环境保护、人类生活关系密切。有关本讲内容的试题一般具有新颖性、综合性、基础性的特点。在复习过程中需要注意的是,2007年高考大纲中,对于生态工程并没有提出要求,可以适当调整,在上一讲生物与环境中适当穿插即可。二考点归纳突破1.基因工程的基本技术第一步:获得符合人类意愿的基因,即获得目的基因。目的基因是依据基因工程设计中所需要的某些DNA分子片段,含有所需要的完整的遗传信息。获得目的基因的方法很多,目前采用的分离、合成目的基因的方法主要有:超速离心法:根据不同基因的组成不同,即其内的碱基对的比例不同,其浮力、密度等理化性质也不同的原理,应用密度梯度超速离心机,直接将特殊的目的基因分离出来。分子杂交法:采用加碱或加热的方法使DNA变成单链,而后加入有放射性标记的RNA,让DNA在特定的条件下,结合成DNA和RNA的杂交分子,再用多聚酶制备出足够数量的双链DNA分子,进而获得DNA目的基因。反转录酶法:先分离出特定的mRNA,再用反转录酶做催化剂,以RNA为模板合成所需要的DNA目的基因。合成法:如果已知目的基因的碱基排列顺序,可用酶法或化学法,直接合成目的基因。目前此法已很少采用。第二步:把目的基因接到某种运载体上,常用的运载体有能够和细菌共生的质粒、温和噬菌体(病毒)等。DNA重组技术:重组DNA就是让DNA片段和载体连接。外源DNA是很难直接透过细胞膜进入受体细胞的。即使进入受体细胞之中,也会受到细胞内限制性内切酶的作用而分解。目的基因结合到经过改造的细菌中的质粒(细菌细胞中的小环状DNA分子)或温和噬菌体(病毒)上后形成的组合体称为重组体DNA。在这一技术中,限制性内切酶是一种常用的工具酶,它能“切开”质粒的环形DNA,也能切取目的基因,然后把目的基因DNA片段与质粒DNA分子的两端,在连接酶的作用互补连接形成重组体DNA。第三步:通过运载体把目的基因带入某生物体内,并使它得到表达。目的基因的表达是指目的基因进入受体细胞后能准确地转录和翻译。目的基因能否表达是基因工程是否成功的关键。目前,人类已经利用外源基因,如人的生长激素基因、人胸腺激素基因、人干扰素基因、牛生长激素基因等,导入细菌中,生产出相应的产品,在临床上得到了广泛的应用,取得了可观的经济效益和社会效益。2.细胞工程技术2(1)细胞融合技术细胞融合技术是指把两个细胞(可以是同种细胞,也可以是异种细胞)在融合剂的作用下,融合成一个细胞的技术。如图所示。应用细胞融合技术进行细胞杂交,能够克服远缘杂交不育的缺陷,对培育新品种具有广阔的应用前景。(2)细胞拆合技术细胞拆合技术也称为细胞核(包括细胞器)移植技术,是将细胞核和细胞质用某种方法拆开,然后再把分离的细胞核和胞质体重新组合成一个新细胞。把从细胞中分离出来的染色体或基因转入另一个细胞中,赋予重建的细胞以某种新的功能,这属于染色体导入或基因转移的技术范畴。(3)细胞培养技术细胞培养技术是将生物体内的某一组织分散成单个细胞,接种在人工配制的适于细胞生长发育的培养基上,然后在适当的无菌的生长条件下(如一定的光照、温度或pH值等)进行培养,使细胞能够生长和不断增殖的技术。由于从组织中分离单细胞并分化成生物体的技术难度较大,目前多采用组织培养技术。如通过植物胚胎(成熟或未成熟胚)或器官(根尖、茎尖、叶原基、花药等)的离体培养,再生成新植株(试管苗)。这种方法能快速、大量繁殖一些有价值的苗林、花卉、药材和濒危植物等。3.试管动物与克隆动物试管动物(婴儿):通过体外受精和胚胎移植技术而产生的动物或婴儿。在这一技术过程中,精子和卵子从动物(人)体内取出来,在人工提供的生活条件下(通常是在试管中)进行受精,并让体外受精的受精卵在试管中发育,再把发育到一定阶段的胚胎移植到“代理母亲”动物(人)的子宫内继续发育直到诞生。试管婴儿主要是在夫妻间进行的,其目的是解决不育问题。克隆动物:一般是指通过无性繁殖形成动物后代。1997年,英国生物学家首次用羊的体细胞成功地克隆了一只小母羊,即多利绵羊。克隆是指无性繁殖系,具体地说,是指从一个共同的祖先,通过无性繁殖的方法产生出来的一群遗传特性相同的DNA分子、细胞或个体。克隆也可指无性繁殖的过程。多利绵羊的培育过程是:将一只母羊(A羊)卵细胞的细胞核中所有的染色体吸出,得到不含遗传物质的卵细胞。然后将实验室里培养的另一只母羊(B羊)的乳腺上皮细胞的细胞核注入到无细胞核的卵细胞中,并进行电激融合,这样就形成了一个含有新的遗传物质的卵细胞。融合后的卵细胞开始卵裂,形成早期的胚胎。然后,把这个胚胎移植到第三只母(C羊)的子宫内,让它继续发育。胚胎发育成熟后,C羊就产下了小母羊多利。如图14-2所示。这只小母羊的遗传性状与B羊的完全相同,简直就是B羊的复制品。在这之前,我国生物学家曾用胚胎细胞作为供核细胞,培育出了克隆牛和克隆兔。但是,多利羊在技术上的突破之处在于供核细胞是体细胞。这说明高度分化的动物体细胞的细胞核,仍然具有全能性,在合适的条件下,就可能发育成新的个体。克隆技术在繁育优良部、治疗人类遗传病、抢救濒危物种和保护生物多样性等方面有广阔的应用前景。4.动物细胞融合与植物细胞杂交的比较动物细胞融合与植物体细胞杂交之间既有共性又有差异,如下表所示:3项目细胞融合原理融合方法诱导手段用途植物体细胞杂交细胞膜的流动性去除细胞壁后诱导原生质体融合离心、电刺激、振动、聚乙二醇诱导克服远缘杂交不亲和的障碍,获得杂种植株动物细胞融合细胞膜的流动性使细胞分散后诱导细胞融合同上,再加上灭活的病毒诱导制备单克隆抗体的技术之一5.花药离体培养与植物组织培养花药离体培养主要在无菌条件下,取出花药或从花药中取出花粉粒,置于人工培养基上进行培养,形成花粉胚或花粉愈伤组织,通过再分化长出根茎叶,最后长成花粉植株。由于这种植株所含的染色体数目只有正常植株的一半,故又称为单倍体植株。因此花药离体培养属于植物组织培养。只不过是利用成熟的生殖细胞进行离体培养,因此这个过程应该属于特殊的有性生殖过程。三高考真题体验例1(2005全国卷Ⅲ)科学家通过基因工程的方法,能使马铃薯块茎含有人奶主要蛋白。以下有关基因工程的叙述,错误的是()A、采用反转录的方法得到的目的基因有内含子B、基因非编码区对于目的基因在块茎中的表壳是不可缺少的C、马铃薯的叶肉细胞可用为受体细胞D、用同一种限制酶,分别处理质粒和含目的基因的DNA,可产生粘性末端而形成重组DNA分子考点定位本题考查了基因结构、基因工程的有关知识。指点迷津真核生物的基因结构包括非编码区和编码区,其中编码区包括外显子和内含子,非编码区对基因的表达起调控作用,对基因的表达是不可缺少的;只有外显子能编码蛋白质,因此通过反转录的方法只能得到的目的基因的外显子的脱氧核苷酸序列。因植物细胞具有全能性,故马铃薯的叶肉细胞可用为受体细胞。必须用用同一种限制酶,分别处理质粒和含目的基因的DNA,这样才能产生2对互补的粘性末端而形成重组DNA分子。参考答案A例2(2003江苏高考题)将小鼠骨髓瘤细胞与一种B淋巴细胞融合,可使融合的细胞经培养产生单克隆抗体,其依据是()A.B淋巴细胞可以产生抗体,但不能无限增殖B.B淋巴细胞只有与骨髓瘤细胞融合后才能产生抗体C.骨随瘤细胞可以无限增殖,但不能产生抗体D.骨髓瘤细胞可以产生抗体,但不能无限增殖考点定位本题考查了单克隆抗体的制备指点迷津在体外培养条件下,B淋巴细胞不能无限繁殖,可产生抗体;骨髓瘤细胞则能在体外大量繁殖,却不能产生抗体。将二者融合后,形成杂交瘤细胞同时具备了双亲的遗传特性,既可产生抗体,又能大量繁殖。参考答案AC例3(2005·江苏生物·11)能够使植物体表达动物蛋白的育种方法是()A、单倍体育种B、杂交育种C、基因工程育种D、多倍体育种考点定位本题考查的知识点是对基因工程育种的理解。指点迷津要让动物蛋白在植物体内表达,必须将控制动物蛋白合成的相关基因导入植物细胞中并让其表达,因此需要通过基因工程技术才能实现。4—↓GATC—……—↓GATC——CTAG↑—……—CTAG↑—用酶Ⅱ切割目的基因—GATC—……—GATC——CTAG—……—CTAG—目的基因—G↓GATCC——CCTAG↑G—用酶Ⅰ切割—GGATCC——CCTAGG—参考答案C例4(2005天津理综)限制性内切酶Ⅰ的识别序列和切点是—G↓GATCC—,限制性内切酶Ⅱ的识别序列和切点是—↓GATC—。在质粒上有酶Ⅰ的一个切点,在目的基因的两侧各有1个酶Ⅱ的切点。①请画出质粒被限制酶Ⅰ切割后所形成的黏性末端。②请画出目的基因两侧被限制酶Ⅱ切割后所形成的黏性末端。③在DNA连接酶的作用下,上述两种不同限制酶切割后形成的黏性末端能否连接起来?为什么?考点定位本题考查的知识点是限制性内切酶的作用和特点以及黏性末端的特点与连接。指点迷津限制性内切酶能识别DNA分子上特定的序列和切点并进行切割,限制性内切酶具有专一性,即一种限制性内切酶只能识别一种特定的核苷酸序列。被限制内切酶切开的DNA两条单链切口,各含有几个伸出的、可互补配对的核苷酸,这种切口就是黏性末端。黏性末端之间,只要切口处伸出的核苷酸间存在互补,就能在DNA连接酶的作用下连接起来。虽然限制性内切酶I和限制性内切酶II识别的序列和切点是不同的,但是形成的黏性末端是相同的,存在着互补关系,因此在DNA连接酶的作用下是可以连接起来的参考答案①②③可以连接。因为由两种不同限制酶切割后形成的黏性末端是相同的(或是可以互补的)例5(2001年上海卷)现有甲、乙两个烟草品种(2n=48),其基因型分别为aaBB和AAbb,这两对基因位于非同源染色体上,且在光照强度大于800勒克司时,都不能生长,这是由于它们中的一对隐性纯合基因(aa或bb)作用的结果。取甲乙两品种的花粉分别培养成植株,将它们的叶肉细胞制成原生质体,并将两者相混,使之融合,诱导产生细胞团。然后,放到大于800勒克司光照下培养,结果有的细胞团不能分化,有的能分化发育成植株。请回答下列问题:(1)甲、乙两烟草品种花粉的基因型分别为和。(2)将叶肉细胞制成原生质体时,使用破除细胞壁。(3)在细胞融合技术中,常用的促融剂是。(4)细胞融合后诱导产生的细胞团叫。(5)在大于800勒克司光照下培养,有种细胞团不能分化;能分化的细胞团是由的原生质体融合来的(这里只考虑2个原生质体的相互融合)。由该细胞团分化发育成的植株,其染色体数是,基因型是。该植株自交后代中,在5大于800勒克司光照下,出现不能生长的植株的概率是。考点定位本题创设一个新情境,综合考查有关植物细胞杂交、减数分裂、遗传规律和单倍体育种的掌握情况和应用能力。指点迷津在只考虑两个原生质体相互融合的情况下,任意两个原生质体(aB与aB、Ab与Ab、aB与Ab)融合后细胞的基因型为aaBB、AAbb和AaBb,其中基因型aaBB和AAbb的细胞团在大于800勒克司的光照下培养,不能分化,基因型为AaBb的细胞团则能分化发育成植株,该植株为二倍体(2n=48)。AaBb的植株自交后代中,在大于800勒克司的光照下不能生长的植物,即含有一对以上隐性基因(aaB_、A_bb和aabb)的植株出现概率为1/4×3/4+3/4×1/4+1/4×1/4=7/16。参考答案(1)aBAb(2)纤维素酶和果胶酶(3)聚乙二醇(4)愈伤组织(5)2甲乙两品种48AaBb7/16四实验·探究·讨论1944年O.Avery从光滑型(S型)肺炎双球菌中分别提取DNA、蛋白质和多糖等物质,并将上述每一种物质单独放入粗糙型(R型)肺炎双球菌的培养