蒋程庆二元一次不等式(组)与简单的线性规划问题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1二元一次不等式(组)与简单的线性规划问题考纲要求:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;理解二元一次不等式表示平面区域并能把不等式(组)所表示的平面区域画出来;解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;利用图解法求得线性规划问题的最优解。基础知识:1.二元一次不等式和二元一次不等式组的定义(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x和y的取值构成有序实数对(x,y),所有这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解集。(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合。二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域。(虚线表示区域不包括边界直线,实线表示区域包括边界直线。)不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。2.二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(yx,),把它的坐标(yx,)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域(特殊地,当C≠0时,常把原点作为此特殊点)。所以画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法。特殊地,当0C时,常把原点作为此特殊点。3.线性规划的有关概念①线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件.②线性目标函数:关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.2④可行解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.4.用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解[结论一]线性目标函数的最大值、最小值一般在可行域的顶点处取得.[结论二]线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个.典例精讲:例1画出不等式44xy表示的平面区域。解:先画直线44xy(画成虚线).取原点(0,0),代入x+4y-4,∵0+4×0-4=-4<0,∴原点在44xy表示的平面区域内,不等式44xy表示的区域如图:变式训练1.画出不等式1234yx所表示的平面区域。变式训练2.画出不等式1x所表示的平面区域。例2用平面区域表示.不等式组3122yxxy的解集。分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。解:不等式312yx表示直线312yx右下方的区域,2xy表示直线2xy右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集。3变式训练1.画出不等式04)(12()yxyx表示的平面区域。变式训练2.由直线02yx,012yx和012yx围成的三角形区域(包括边界)用不等式可表示为。例3求z=2x+y的最大值,使式中的x、y满足约束条件.1,1,yyxxy解:不等式组表示的平面区域如图所示:当x=0,y=0时,z=2x+y=0点(0,0)在直线0l:2x+y=0上.作一组与直线0l平行的直线l:2x+y=t,t∈R.可知,在经过不等式组所表示的公共区域内的点且平行于l的直线中,以经过点A(2,-1)的直线所对应的t最大.所以zmax=2×2-1=3.变式训练1.求z=3x+5y的最大值和最小值,使式中的x、y满足约束条件.35,1,1535yxxyyxxy(12,12)(-1,-1)(2,-1)2x+y=0x+y-1=0x-y=0CBAO21-1-2-11234变式训练2.若实数x,y满足1311xyxy求4x+2y的取值范围。变式训练3.已知x、y满足不等式,求z=3x+y的最小值。0,01222yxyxyx

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功