蒙特卡罗方法入门本文通过五个例子,介绍蒙特卡罗方法(MonteCarloMethod)一、概述蒙特卡罗方法是一种计算方法。原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值。它非常强大和灵活,又相当简单易懂,很容易实现。对于许多问题来说,它往往是最简单的计算方法,有时甚至是唯一可行的方法。它诞生于上个世纪40年代美国的曼哈顿计划,名字来源于赌城蒙特卡罗,象征概率。二、π的计算第一个例子是,如何用蒙特卡罗方法计算圆周率π。正方形内部有一个相切的圆,它们的面积之比是π/4。现在,在这个正方形内部,随机产生10000个点(即10000个坐标对(x,y)),计算它们与中心点的距离,从而判断是否落在圆的内部。如果这些点均匀分布,那么圆内的点应该占到所有点的π/4,因此将这个比值乘以4,就是π的值。通过R语言脚本随机模拟30000个点,π的估算值与真实值相差0.07%。三、积分的计算上面的方法加以推广,就可以计算任意一个积分的值比如,计算函数y=x2在[0,1]区间的积分,就是求出下图红色部分的面积。这个函数在(1,1)点的取值为1,所以整个红色区域在一个面积为1的正方形里面。在该正方形内部,产生大量随机点,可以计算出有多少点落在红色区域(判断条件yx2)。这个比重就是所要求的积分值。用Matlab模拟100万个随机点,结果为0.3328。四、交通堵塞蒙特卡罗方法不仅可以用于计算,还可以用于模拟系统内部的随机运动。下面的例子模拟单车道的交通堵塞。根据Nagel-Schreckenberg模型,车辆的运动满足以下规则。当前速度是v。如果前面没车,它在下一秒的速度会提高到v+1,直到达到规定的最高限速。如果前面有车,距离为d,且dv,那么它在下一秒的速度会降低到d-1。此外,司机还会以概率p随机减速,将下一秒的速度降低到v-1。在一条直线上,随机产生100个点,代表道路上的100辆车,另取概率p为0.3。上图中,横轴代表距离(从左到右),纵轴代表时间(从上到下),因此每一行就表示下一秒的道路情况。可以看到,该模型会随机产生交通拥堵(图形上黑色聚集的部分)。这就证明了,单车道即使没有任何原因,也会产生交通堵塞。五、产品厚度某产品由八个零件堆叠组成。也就是说,这八个零件的厚度总和,等于该产品的厚度。已知该产品的厚度,必须控制在27mm以内,但是每个零件有一定的概率,厚度会超出误差。请问有多大的概率,产品的厚度会超出27mm?取100000个随机样本,每个样本有8个值,对应8个零件各自的厚度。计算发现,产品的合格率为99.9979%,即百万分之21的概率,厚度会超出27mm。六、证券市场证券市场有时交易活跃,有时交易冷清。下面是你对市场的预测。如果交易冷清,你会以平均价11元,卖出5万股。如果交易活跃,你会以平均价8元,卖出10万股。如果交易温和,你会以平均价10元,卖出7.5万股。已知你的成本在每股5.5元到7.5元之间,平均是6.5元。请问接下来的交易,你的净利润会是多少?取1000个随机样本,每个样本有两个数值:一个是证券的成本(5.5元到7.5元之间的均匀分布),另一个是当前市场状态(冷清、活跃、温和,各有三分之一可能)。模拟计算得到,平均净利润为92,427美元。七、参考链接IntroductionToMonteCarloMethods,byAlexWoodsMonteCarloSimulationTutorial蒙特卡罗(MonteCarlo)方法简介,by王晓勇蒙特卡罗(MonteCarlo)模拟的一个应用实例