部分初中数学公式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:a2+b2=(a+b)2-2ab=(a-b)2+2ab;a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b2)2+(32b)2;a2+b2+c2+ab+bc+ca=12[(a+b)2+(b+c)2+(c+a)2]a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…x2+12x=(x+1x)2-2=(x-1x)2+2;……等等。二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换22研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t0),而变为熟悉的一元二次不等式求解和指数方程的问题。三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1x的值域时,易发现x∈[0,1],设x=sin2α,α∈[0,2],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。均值换元,如遇到x+y=S形式时,设x=S2+t,y=S2-t等等。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t0和α∈[0,2]。【注】应用局部换元法,起到了化繁为简、化难为易的作用。三、定义法所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。速度×时间=路程S×T=L路程÷速度=时间L÷S=T路程÷时间=速度L÷T=S单价×数量=总价33总价÷单价=数量总价÷数量=单价工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率被加数+加数=和和-加数=被加数和-被加数=加数被减数-减数=差被减数-差=减数差+减数=被减数因数×因数=积积÷一个因数=另一个因数被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形周长C面积S边长a周长=边长×4C=4a44面积=边长×边长S=a×a=a22、正方体体积:V棱长:a表面积:S表面积=棱长×棱长×6S表=a×a×6=a2×6体积=棱长×棱长×棱长V=a×a×a=a33、长方形周长:C面积:S边长:a周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4、长方体体积:V面积:s长:a宽:b高:h(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5三角形面积:s底:a高:h面积=底×高÷2s=ah÷2三角形高=面积×2÷底h=s×2÷a三角形底=面积×2÷高a=s×2÷h6平行四边形55面积:s底:a高:h面积=底×高s=ah7梯形面积:s上底:a下底:b高:h面积=(上底+下底)×高÷2s=(a+b)×h÷28圆形面积:S周长:C直径:d半径:r(1)周长=直径×π=2×π×半径C=πd=2πr(2)面积=半径×半径×πS=πrr=πr29圆柱体体积:v高:h底面积:s底面半径:r底面周长:c(1)侧面积=底面周长×高s侧=c×h(2)表面积=侧面积+底面积×2s表=s侧+s底×2(3)体积=底面积×高V=s底×h(4)体积=侧面积÷2×半径V=s侧÷2×r10圆锥体66体积:v高:h底面积:s底面半径:r体积=底面积×高÷3V=s底×h÷311球的表面积计算公式:球的表面积=4πr2,r为球半径球的体积计算公式:V球=34πr3,r为球半径总数÷总份数=平均数植树问题1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:77株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数1相遇问题(面对面碰上)相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间2追及问题(从后面追上)追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间3操场赛跑问题较复杂请参考上面两种情况流水问题顺流速度=静水速度+水流速度88逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米1米=10分米991分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000千克1千克=1000克10101千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒内角和:三角形的内角和=180度。分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。1111一、算术方面1.加法交换律:两数相加交换加数的位置,和不变。2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3.乘法交换律:两数相乘,交换因数的位置,积不变。4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。8.方程式:含有未知数的等式叫方程式。9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。1212异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。15.分数除以整数(0除外),等于分数乘以这个整数的倒数。16.真分数:分子比分母小的分数叫做真分数。17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。18.带分数:把假分数写成整数和真分数的形式,叫做带分数。19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。20.一个数除以分数,等于这个数乘以分数的倒数。21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。常见的初中数学公式1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功