郴州市2008年基础教育课程改革试验区初中毕业学业考试试卷《数学》(试题卷)一、选择题(本题满分20分,共10小题,每小题2分)1.实数a、b在数轴上的位置如图1所示,则a与b的大小关系是()A.abB.a=bC.abD.不能判断2.下列计算错误的是()A.-(-2)=2B.822C.22x+32x=52xD.235()aa3.方程2x+1=0的解是()A.12B.12C.2D.-24.如果点M在直线1yx上,则M点的坐标可以是()A.(-1,0)B.(0,1)C.(1,0)D.(1,-1)5.如图2,直线l截两平行直线a、b,则下列式子不一定成立的是()A.∠1=∠5B.∠2=∠4C.∠3=∠5D.∠5=∠26.下列说法正确的是()A.抛一枚硬币,正面一定朝上;B.掷一颗骰子,点数一定不大于6;C.为了解一种灯泡的使用寿命,宜采用普查的方法;D.“明天的降水概率为80%”,表示明天会有80%的地方下雨.7.下列图形中,是轴对称图形但不是中心对称图形的是()ABCD8.如图3,在O中,圆心角60BOC,则圆周角BAC等于()A.60B.50C.40D.309.一次函数1yx不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限OCBA图3图254321lbaoba图110.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A.12B.13C.16D.18二、填空题(本题满分16分,共8小题,每小题2分)11.因式分解:24x____________12.某电视台为满足观众在北京奥运会期间收看不同比赛项目的要求,做了一个随机调查,结果如下表:如果你是电视台负责人,在现场直播时,将优先考虑转播比赛.13.函数11yx的自变量的取值范围是_________.14.如图4,E、F是ABC两边的中点,若EF=3,则BC=_______.15.已知O的半径是3,圆心O到直线l的距离是3,则直线l与O的位置关系是.16.已知四边形ABCD中,90ABC,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________.17.已知一圆锥的底面半径是1,母线长是4,它的侧面积是______.18.如图5,D是AB边上的中点,将ABC沿过D的直线折叠,使点A落在BC上F处,若50B,则BDF__________度.三、解答题:(本题满分30分,共5小题,每小题6分)19.计算:201()(32)2sin303220.解不等式组:718532xxx①②最喜欢观看的项目游泳体操球类田径人数307520095FECBA图4FEDCBA图521.作图题:如图6,先将ΔABC向下平移4个单位得到111ABC,再以直线l为对称轴将111ABC作轴反射得到222ABC,请在所给的方格纸中依次作出111ABC和222ABC.22.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30,B村的俯角为60(.如图7).求A、B两个村庄间的距离.(结果精确到米,参考数据21.41431.732,)23.已知一次函数y=ax+b的图像与反比例函数4yx的图像交于A(2,2),B(-1,m),求一次函数的解析式.四、证明题(本题8分)24.如图8,ΔABC为等腰三角形,把它沿底边BC翻折后,得到ΔDBC.请你判断四边形ABDC的形状,并说出你的理由.lCBA图6QBCPA4506030图7CABD图8合计五、应用题(本题满分16分,共2小题,每小题8分)25.我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?26.我国政府规定:从2008年6月1日起限制使用塑料袋.5月的某一天,小明和小刚在本市的A、B、C三家大型超市就市民对“限塑令”的态度进行了一次随机调查.结果如下面的图表:超市态度ABC赞同207555150不赞同2317无所谓572028105(1)此次共调查了多少人?(2)请将图表补充完整;(3)用你所学过的统计知识来说明哪个超市的调查结果更能反映消费者的态度.六、综合题(本题满分10分)27.如图10,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F.FE与DC的延长线相交于点G,连结DE,DF..(1)求证:ΔBEF∽ΔCEG.(2)当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.(3)设BE=x,△DEF的面积为y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?图10MBDCEFGxA15010050无所谓不赞同赞同态度人数A、B两超市共计50%15%无所谓不赞同赞同A、B、C三家超市共计图9郴州市2008年基础教育课程改革试验区初中毕业学业考试试卷数学参考答案及评分标准一、选择题(本题满分20分,共10小题,每小题2分)CDBCDBADAC二、填空题(本题满分16分,共8小题,每小题2分)题号1112131415161718答案22xx乒乓球1x6相切AB=BC或者BC=CD或者CD=DA或者DA=AB4π80三、解答题(本题满分30分,共5小题,每小题6分)19.原式=4-1+1+3····························································4分=5···························································6分20.解不等式①得x1···················································2分解不等式②得x-1······················································4分所以这个不等式组的解集为:-1x1················································6分21.正确作出图形,每个3分(图略)·············································6分22.解:根据题意得:30A,60PBC所以6030APB,所以APBA,所以AB=PB································3分在RtBCP中,90,60CPBC,PC=450,所以PB=4509003003sin603·······································5分所以3003520ABPB(米)答:略.·······························································6分23.解:因为B(-1,m)在4yx上,所以4m所以点B的坐标为(-1,-4)··························································2分又A、B两点在一次函数的图像上,所以42,222abaabb解得:+··················································5分所以所求的一次函数为y=2x-2·································6分四、证明题(本题满分8分)24.四边形ABCD为菱形················································2分理由是:由翻折得△ABC≌△DBC.所以,ACCDABBD····4分因为△ABC为等腰三角形,所以ABAC所以AC=CD=AB=BD,·········································7分故四边形ABCD为菱形··········································8分注:如果学生只答四边形ABCD为平行四边形给1分,说理正确,给5分,共6分.五、应用题(本题满分16分,共2小题,每小题8分)25.(1)设2007职业中专的在校生为x万人根据题意得:1500×1.2x-1500x=600···················································3分解得:2x········································5分所以.21.22.4万人2.415003600=万元···············································································7分答:略.······································8分26.(1)300(人)·························································1分(2)5,45,35%,图略·········································5分(3)C超市可以从平均数或中位数等方面说明,说理合理就行····················8分六、综合题(本题满分10分)27.(1)因为四边形ABCD是平行四边形,所以ABDG·····························1分所以,BGCEGBFE所以BEFCEG△∽△···············································································3分(2)BEFCEG△与△的周长之和为定值.·····················································4分理由一:过点C作FG的平行线交直线AB于H,因为GF⊥AB,所以四边形FHCG为矩形.所以FH=CG,FG=CH因此,BEFCEG△与△的周长之和等于BC+CH+BH由BC=10,AB=5,AM=4,可得CH=8,BH=6,所以BC+CH+BH=24···············································································6分理由二:由AB=5,AM=4,可知在Rt△BEF与Rt△GCE中,有:4343,,,5555EFBEBFBEGEECGCCE,所以,△BEF的周长是125BE,△ECG的周长是125CE又BE+CE=10,因此BEFCEG与的周长之和是24.····································6分AMxHGFEDCB(3)设BE=x,则43,(10)55EFxGCx所以21143622[(10)5]2255255yEFDGxxxx·······························8分配方得:2655121()2566yx.所以,当556x时,y有最大值.··································································9分最大值为1216.