行列式高等代数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1补充:行列式的定义行列式的性质方程组的解与行列式的关系2111122111222112112221221122221122211212221211122()01axaxbaaaaxbabaaxaxbaaaababaxaa例:设有二元一次线性方程组,当时,二阶行列式行列式的定义11112112211221112211221121212222111122112211222122112212221,ababxaaaaaaabbaaaaaababaabbaaaaaabb定义则:二阶行列式:311112212112222121122211211111211122122212222,axaxbaxaxbaaaaxxaaaaaaaabbbb这时,方程组的解为用行列式表示:412121223132013021(2)0322,232(2)3313133221302031323131332xxxxxx例:解方程组的解解:利用行列式表示52111212122212::.由个数排成行列的表格,两边以竖线,成为一个阶行列式元素阶行列的定义式:nnnnnnijnnnnaaaaaaaaaan6111212122212:nnijnnijnnjiaaaaaaaaiaA=jMMaijijijijnaa余子式的去掉第行和第列后的行列式的:代数余子式(-1)值阶行列式的定义:nnnjnjnnijijiinijijiinjjjiijaaaaaaaaaaaaaaaaA111111111111111111111111)1(8111111121212221111121211121111det()2=对于行列式对于()定义为:定义1阶阶行列式值第一上式称为行列按的展开式。行式nnnnnnnnnjjjaanaaaaaaaAaAaAaaaaAn111213212223313233222321232122111213323331311223333132112233233212213323311223311321321123321221313213222313133()()()阶行列式aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa2231aa101111121213132213054112213054110535302(1)(2)(1)(1)(1)1-14-14120(1)51(2)3(1)54(1)31042(5)(2)(23)(1)359:111213例解计算aAaAaA1111223312233113211111221331211222233231132233331213222321123321221331322311231332331112132122230设有三元一次线性方程组当时,方程组有惟一解:aaaaaaaaaaxaxaxbaxaxaxbaxaaaaxaxbaaaaaaaaaaaaaaaabbaabxa11131112212321223133313211121311121321222321222331323331321122333313233323,,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbaxx122行列式的性质性质1n阶行列式可按任意行或列的展开式来计算.按第r行的展开式为:11221阶行列式值rrrrrrrnnnjrjjnaAaAaAaA按第s列的展开式为11221阶行列式值nnsssssssnsiiinaAaAaAaA13性质2nnnnnnaaaaaaaaa212222111211.212221212111nnnnnnaaaaaaaaa行列式转置,行列式值不变.即:141111111111.(1)jnjnnnjnnnnjnnaaaaaaakkkaaaaa某一行(列)的公因子可以提出如性:质3(2)(行列式的“加法”)nnnnsnsnssssnaaacbcbcbaaa21221111211nnnnsnssnnnnnsnssnaaacccaaaaaabbbaaa212111211212111211(注意:只拆一行,其余行不变)性质4:任意对换行列式的两行(或两列)元素,其值变号.如2311315211321132.31522311121311121311)(31rr(1)()(2)相同行列式:行列式有两行列,则行列式值=0成比例有两行(列),行列则式值=0推论k5.把行列式的某行(列)的倍加到另一行(列)上,行列式的性质值不变18111111111111111ijnijjnttitjtnttitjtjtnnninjnnnninjnjnnaaaaaakaaaaaaaaakaaaaaaaaakaaajki列乘上,加入到第列11112211211222221122nnnnnnnnnnaxaxaxbaxaxaxbaxaxaxb3.1克莱姆法则()定理当系数行列式3.方程组的解与行列式的关系不为零时,方程组有惟一解:111,111,11212,122,121,1,1jjjjjjjnjjnnnnnnnaaaaaaaaaaaaaaa111,11,11212,12,121,1,1111,111,11212,122,1212,jjjjjjjjjjjjnnnnnnnjnnnaaaaaaaaaaaaaaaaaaaaabbbax1,1,1(1)jnjjnnnnnaaaaajn111122121122221122000nnnnnnnnnaxaxaxaxaxaxaxaxax:如下结论成立:3.2对于齐次线性方程组1112121222120nnnnnnaaaaaaaaa方程组只有零解.1112121222120nnnnnnaaaaaaaaa方程组有非零解.

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功