课时跟踪训练51

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

课时跟踪训练(五十一)一、选择题1.某中学进行了该学年度期末统一考试,该校为了了解高一年级1000名学生的考试成绩,从中随机抽取了100名学生的成绩,就这个问题来说,下面说法正确的是()A.1000名学生是总体B.每个学生是个体C.1000名学生的成绩是一个个体D.样本的容量是100[解析]1000名学生的成绩是总体,其容量是1000,100名学生的成绩组成样本,其容量是100.故选D.[答案]D2.(2015·四川卷)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法[解析]因为要了解三个年级之间的学生视力是否存在显著差异,所以采用分层抽样的方法最合理.故选C.[答案]C3.(2015·北京海淀区期末)为了估计某水池中鱼的尾数,先从水池中捕出2000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为40尾,根据上述数据估计该水池中鱼的尾数为()A.10000B.20000C.25000D.30000[解析]由题意可得有标记的鱼所占的比例大约为40500=225,设水池中鱼的尾数是x,则225=2000x,解得x=25000,故选C.[答案]C4.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是()A.5B.7C.11D.13[解析]间隔数k=80050=16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7.故选B.[答案]B5.福利彩票“双色球”中红色球的号码由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为()49544354821737932378873520964384263491645724550688770474476721763350258392120676A.23B.09C.02D.17[解析]从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02.故选C.[答案]C6.(2015·江西八校联考)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为()A.480B.481C.482D.483[解析]根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,d=25,所以7+25(n-1)≤500,所以n≤20,最大编号为7+25×19=482,故选C.[答案]C7.某工厂在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为()A.800B.1000C.1200D.1500[解析]因为a,b,c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1200双皮靴.故选C.[答案]C8.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样[解析]①在1~108之间有4个,109~189之间有3个,190~270之间有3个,符合分层抽样的规律,可能是分层抽样.同时,从第二个数据起每个数据与其前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的;同理③符合分层抽样的规律,可能是分层抽样时,从第二个数据起每个数据与其前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的,故选D.[答案]D9.某高中在校学生2000人,高一年级与高二年级人数相同并都比高三年级多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如下表:高一年级高二年级高三年级跑步abc登山xyz其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二年级参与跑步的学生中应抽取()A.36人B.60人C.24人D.30人[解析]∵登山的占总数的25,故跑步的占总数的35,又跑步中高二年级占32+3+5=310.∴高二年级跑步的占总人数的35×310=950.由950=x200得x=36,故选A.[答案]A10.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在A营区,从301到496在B营区,从496到600在C营区,三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,9[解析]依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300,得k≤1034,因此A营区被抽中的人数是25;令3003+12(k-1)≤495,得1034k≤42,因此B营区被抽中的人数是42-25=17.结合各选项知,选B.[答案]B二、填空题11.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一m人、高二780人、高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13,则m+n=________.[解析]由题知,35m+780+n×780=13,解得m+n=1320.[答案]132012.大、中、小三个盒子中分别装有同一种产品120个、60个、20个,现在需从这三个盒子中抽取一个样本容量为25的样本,较为恰当的抽样方法为________.[解析]因为三个盒子中装的是同一种产品,且按比例抽取每盒中抽取的不是整数,所以将三盒中产品放在一起搅匀按简单随机抽样法(抽签法)较为恰当.[答案]简单随机抽样13.(2015·青岛模拟)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为__________的学生.[解析]因为12=5×2+2,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学,所以第8组中抽出的号码为5×7+2=37号.[答案]37三、解答题14.为了考察某校的教学水平,将抽查这个学校高三年级的部分学生本年度的考试成绩.为了全面反映实际情况,采取以下三种方式进行抽查(已知该校高三年级共有20个班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生的人数相同):①从高三年级20个班中任意抽取一个班,再从该班中任意抽取20名学生,考察他们的学习成绩;②每个班抽取1人,共计20人,考察这20名学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察(已知该校高三学生共1000人,若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式的总体、个体、样本分别是什么?每一种抽取方式抽取的样本中,样本容量分别是多少?(2)上面三种抽取方式各自采用的是何种抽取样本的方法?(3)试写出上面的第三种方式抽取样本的步骤.[解](1)这三种抽取方式的总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式的样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)三种抽取方式中,第一种采用的是简单随机抽样法;第二种采用的是系统抽样法和简单随机抽样法;第三种采用的是分层抽样法和简单随机抽样法.(3)第三种方式抽样的步骤如下:第一步,分层,因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步,确定各个层次抽取的人数.因为样本容量与总体的个体数之比为:100∶1000=1∶10,所以在每个层次中抽取的个体数依次为15010,60010,25010,即15,60,25.第三步,按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取25人.15.一个城市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本,按分层抽样方法抽取样本时,各类百货商店要分别抽取多少家?写出抽样过程.[解]∵21∶210=1∶10,∴2010=2,4010=4,15010=15.∴应从大型商店中抽取2家,从中型商店中抽取4家,从小型商店中抽取15家.抽样过程:(1)计算抽样比21210=110;(2)计算各类百货商店抽取的个数:2010=2,4010=4,15010=15;(3)用简单随机抽样方法依次从大、中、小型商店中抽取2家、4家、15家;(4)将抽取的个体合在一起,就构成所要抽取的一个样本.16.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.[解]总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为36n,分层抽样的比例是n36,抽取的工程师人数为n36×6=n6,技术员人数为n36×12=n3,技工人数为n36×18=n2,所以n应是6的倍数,36的约数,即n=6,12,18.当样本容量为(n+1)时,总体容量是35人,系统抽样的间隔为35n+1,因为35n+1必须是整数,所以n只能取6.即样本容量n=6.

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功