NUMERICALSIMULATIONOFAERODYNAMICNOISEGENERATEDBYHIGHSPEEDTRAINSZhenxuSun**,JingjingSong#andYiranAn**StateKeyLaboratoryforTurbulenceandComplexSystems,CollegeofEngineering,PekingUniversity,Beijing100871,ChinaE-Mail:anyr@pku.edu.cn(CorrespondingAuthor)**StateKeyLaboratoryofHighTemperatureGasDynamics,InstituteofMechanics,AcademiaSinica,Beijing100190,China#ChinaAcademyofAerospaceAerodynamics,Beijing100074,ChinaABSTRACT:Aerodynamicnoisebecomesmoreandmoresignificantandsometimescouldbepredominantastherunningspeedofhighspeedtrainsincreases.Asaresult,aerodynamicnoisehastobetakenintoconsiderationduringthedesignofhighspeedtrains.Inpresentwork,theresearchonaerodynamicnoiseofthehighspeedtrainwithaspeedof300km/hhasbeenperformed.Thenonlinearacousticssolver(NLAS)approachisadoptedtostudytheaerodynamicnoiseinthenearfieldofthehighspeedtrain.Withtheuseofanacousticsurface,theresearchontheaerodynamicnoiseinthefarfieldhasbeencarriedoutbysolvingtheFfowcs-Williams/Hawking(FW-H)equation.Atfirstthemethodvalidationisperformedthroughatwo-dimensionalbackwardstepcase,whichshowsexcellentagreementwithexperimentalresults.Thecharacteristicsoftheflowfielddominatethegenerationofaerodynamicnoise,thereforetheflowfieldisfirstlyanalyzed,includingthehead,therear,andtheinter-coachspacingofthetrain.Byuseofprobesinspecificregionsonthesurfaceofthetrain,thecontributionofdifferentpartsofthetraintotheaerodynamicnoiseisdiscussed.Meanwhile,thefarfieldfeatureofaerodynamicnoiseisalsostudiedbyplacingprobesinthefarfield.Basedontheaboveanalysis,theaerodynamicnoiseperformanceofthespecifichighspeedtrainisassessed.Keywords:highspeedtrains,aerodynamicnoise,NLAS,FW-Hequation,acousticsurfaceHighspeedtrainnoiseemission:Latestinvestigationoftheaerodynamic/rollingnoisecontributionC.Melleta,_,F.Le′tourneauxa,F.Poissonb,C.TalottebaSNCFAgenced’EssaiFerroviaire,21AvduPtAllende,F94407VitrysurSeine,FrancebSNCFDirectiondel’InnovationetdelaRecherche,45ruedeLondres,F75379Paris,Cedex08,FranceAccepted26August2005Availableonline8February2006Abstract:Theaimofthispaperistodiscussthequantificationofaeroacousticandrollingnoisesourcesemittedbyhigh-speedtrainsexternally.ThisworkreliesonthecomparisonofexperimentaldataobtainedintheDEUFRAKOAnnexKandK2projectsandthoseproducedmorerecently.ThesearefirstlymeasurementsobtainedwithintheNOEMIEprojectdedicatedtotheHighSpeedTechnicalSpecificationsforInteroperabilityinvolvingthemeasurementoftheacousticemissionofdifferentrollingstocktravellingat250,300and320km/h(TGV-Duplex,ICE3,Thalys).Additionally,measurementsareconsideredthatareobtainedintheframeworkofanSNCFacoustictestcampaignperformedonaTGV-Duplexatspeedsupto350km/h.Thesecomprisesourcelocalisationusingtwo-dimensionalacousticarraymeasurementsandassessmentofthewaysidenoiseincreaseasafunctionofthespeed.TheconclusionsdrawnintheDEUFRAKOKprojectarecomparedwiththenewsetofdata.Adetailedanalysisoftheresultsisalsoprovided,supportedbycomplementarymeasurements(wheelandrailmeasurements)andsimulations(TWINScalculations).r2006ElsevierLtd.Allrightsreserved.TheNumericalSimulationofAerodynamicNoiseGeneratedbyCRH3Train’sHeadSurfaceFanguoKong,JianWangSchoolofMechanicalandElectricalEngineering,WuyiUniversity,Jiangmen,ChinaEmail:fgkong@163.comReceived10August2015;accepted25August2015;published28August2015Copyright©2015byauthorsandScientificResearchPublishingInc.ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY)Abstract:Inordertosolvetheincreasinglyseriousproblemofrailwaynoisewhichcausedbythetrain’sspeed-up,especiallytheproblemofthedominantaerodynamicnoiseofthehigh-speedtrain,it’snecessarytohaveanumericalsimulationanalysisfortheCRH3train’sthreedimensionalflowmodel.Settingmonitoringpointsinthepositionsthatthesurfacecurvaturechangessignificantly,usingtheLargeEddySimulationMethod(LES)tohaveatransientsimulationfortheCRH3trainwhichisinthespeedof300km/hand350km/h,applyingtheacousticstheoryofLighthill-CurletopredicttheaerodynamicnoisecausedbytheheadoftheCRH3train.Thegenerationanddistributionofthetrain’saerodynamicnoiseareanalyzed,soastoprovidesomereasonablesuggestionsforthedesignofthetrainbody.Keywords:AerodynamicNoise,ThreeDimensionalFlowMode,MonitoringPoints,LargeEddySimulation(LES),Lighthill-Curle高速列车车头的气动噪声数值分析刘加利,张继业,张卫华(西南交通大学牵引动力国家重点实验室,四川成都610031)摘要:随着列车运行速度的提高,列车气动噪声变得越来越明显,降低气动噪声已成为控制高速列车噪声的关键之一。本文对高速列车车头气动噪声进行数值分析。首先,建立高速列车三维绕流流场的数学物理模型,分别利用标准k-ε湍流模型和大涡模拟计算高速列车的外部稳态和瞬态流场。然后,基于稳态流场,利用宽频带噪声源模型计算高速列车车身表面气动噪声源;基于瞬态流场,分析车身表面脉动压力的时域及频域特性;利用Lighthill声学比拟理论,计算高速列车远场气动噪声,分析远场气动噪声的时域及频域特性。本文对研究和控制高速列车气动噪声具有一定意义。关键词:高速列车;气动噪声;大涡模拟;宽频带噪声源模型;Lighthill声学比拟理论中图分类号:U292.914文献标志码:A高速车辆气流噪声计算方法刘红光,陆森林(江苏大学汽车与交通工程学院,江苏镇江212013)摘要:随着发动机、传动系和轮胎等其它噪声的降低以及车速的不断提高,高速车辆气流噪声变得越来越突出,因此研究和降低气流噪声已成为控制高速车辆噪声的关键之一。通过求解广义Lighthill方程,得到了适合车辆行驶工况的气流噪声积分计算公式。根据车辆的实际工况,对气流噪声计算公式进行了分析,明确了在车辆气流噪声中偶极子源噪声占主导地位,表面脉动压力是车辆气流噪声的主要声源。在此基础上,对车辆气流噪声某些特性进行了讨论和试验。关键词:车辆;空气动力性噪声;计算方法中图分类号:U491.91文献标识码:`高速列车气动噪声的计算研究孙振旭1,王一伟2,安亦然1(1.北京大学工学院北京大学湍流与复杂系统研究国家重点实验室,北京100871,Email:sunzhenxu@gmail.com;2.中国科学院力学研究所,北京100190)摘要:通过对高速列车气动噪声产生的关键部位进行简