.2005.133ComputerMeasurement&Control235==================================================2004-06-212004-07-141979-1946-1671-4598200503-0235-02TP183BBP113001BPBPImprovedHomotopyBPAlgorithmandApplicationinFaultDiagnosisZhangHeShenDongriChenYijunLiYijieSchoolofInformation&EngineeringLiaoningUniversityofPetroleum&ChemicalTechnologyFushun113001ChinaAbstractInordertoovercometheproblemsofslowrateofconvergenceandfallingeasilyintolocalminimuminBPalgorithmanewimprovedhomotopyBPalgorithmisputforward.Ittransferstheidentitymatrixofoutputmodeincommonuseintothebinarysystem.Takingfuelsystemofdieselengineasexamplethefaultsthatappearedcommonarediagnosedadoptingtheimprovedalgorithms.Theresultofsimulationshowsthattheimprovedalgorithmhasadvantagesoffastconvergenceandavoidingfallingintolocalminimum.KeywordsneuralnetworkHomotopybinarysystemfaultdiagnosis0BP2BPHomotopyBackPropagation-HBPBP3BPBP1BPBPWk+1=Wk-η∂E∂Wk1WkηE=12ΣMp=1Σn0i=1yip-^yip2Mn0yip^yip∂E∂WkBP1.1BPBPΔWk+1=-η∂E∂Wk+αΔWk2αBPBPBPηηBPηk+1=ηk*deα=0EkEmin*erηk+1=ηk*inα=α{3EminkerindeαBPAdvancedBackPropagationMethod-ABPMWk+1=Wk-ηk∂E∂Wk+αΔWk423613==================================================1.2BP459Fkk=12913Sii=12131H110H19×99×41H2BP1S1S2S3S4S5S6S7S8S9S10S11S12S13H1H2F101010010011011000000000001F210100001000100100000000010F300000110101000010000000011F400001001010100001000000100F501010110001000000100000101F600100010100000000010000110F710100000000100000001000111F801001000001010000000101000F9100100000000000000000110012BP6-7fx=0fx=0gx=0fx=0BPBPBPBPBPBPBPBP3BPBPAdvancedHomotopyBackPropa-gation-AHBPBPBP3Htx=1-tmgx+tnfx5tt=0t=1t=0H0x=gxt=1H1x=fxmnmn0.20.53DD1D2DMdd1d2dMM5Tt=1-tmd+tnD6TttTtABPMtt=0t=1t=0T0=dddt=1T1=DdDBPAHBPstep11t∈01N0=t0t1tN-1=1t=t02ABPMη0αerindeεEithmn346dE=0εt=t1step2ii=12N-1iABPMEiWti=‖Tti-OWI‖27Tti=1-tmid+tniD8OWIWI1dABPMEiEthEthiii=N-1Eth=ε2dt=ti6Tt3ABPMstep3step3iNi=i+1step2.35113-15-4Sε=0.001α=0.9η0=0.5BP20000HBPAHBPt=00.20.81m=n=0.5200002493,:·249·====================================================,,0,。,-3º(,4,。,4。,,。,。,,-3º,0.2s,,。,,,。。,10%,;,,,3zd=0,;d=1,。2°,。:γ、β、;z。(2)zd=0,;d=131。,,。,1.3m。,2.1m。。:γmax=3°,βmax=1.2°,dymax=-1.8°,dxmax=-2°,;max=1.1°,10s,1º,3.2m,。4,,。:[1]SparksA,BandaSS.Applicationofstructuredsingularvaluesyn-thesistoafighteraircraft[J].JournalofGuidance,Control,andDynanics,1993,AC(8):940-947.[2],,.[J].,2002,6:1-4.[3],.(DFL)[J].,1998,9:1-5.[4],,,.[J].,2004,12(1):1-5.[5].[D].:,====================================================2000.(236),BP、HBPAHBP30,,2。2BP19123621482110028HBP27194862529215643AHBP3050338722202,HBPBP,,。AHBPBPHBP。AHBP,,。,4,3,AHBP,4。43S1S2S3S4S5S6S7S8S9S10S11S12S13F20.95210.00200.97230.00030.00090.00530.00200.96540.00050.00100.0010.96330.0002F50.00100.98560.01231.00000.00210.98100.90210.00020.00320.00000.98200.00000.0004F70.95230.00140.89620.01420.00010.00010.00000.00120.00010.00020.00181.00000.0005F90.95690.00520.00020.92540.00310.00010.00150.00000.00160.00240.00060.00000.00084F20.00420.01090.99390.01010010F50.00360.99420.00150.99930101F7F90.00350.99180.99790.987101110.99490.00440.00610.99621001,,。,AHBPBP,,,。:[1],,.BP[J].,2000,27(1):30-32[2],.BP[J].,1996,19(9):687-694.[3],.[J].,1999,16(9):9-10,20.[4],,.BP[J].,2002,24(5):428-431.[5].[J].,2003,11(7):490-491,495.[6]ZhangLQ,HanGQ.Optimalhomotopymethodsforsolvingnon-linearsystems[J].Numer.Math,1993,65:523-538.[7]KalabaR,TesfatsionL.Solvingnonlinearequationsbyadaptivehomo-topycontinuation[J].Appl.Math.Comput.,1991,1:99-115.