定性仿真理论及其应用摘要:本文首先介绍了定性仿真的产生背景及理论发展状况,然后说明了定性仿真在各领域的应用情况,最后对定性仿真的发展方向进行了探讨。关键词:定性仿真,定性模型1定性仿真的产生与理论现状定性仿真(QualitativeSimulation)是以非数字手段处理信息输入、建模、行为分析和结果输出等仿真环节,通过定性模型推导系统的定性行为描述。定性仿真是系统仿真的一个分支,是系统仿真与人工智能理论交叉产生的新领域。相对于传统的数字仿真,定性仿真有其独到之处:这种仿真能处理多种形式的信息,有推理能力和学习能力,能初步模仿人类思维方式,人机界面更符合人的思维习惯,所得结果更容易理解。定性仿真的研究中,美国学者起步较早。70年代后期,美国XEROX实验室的JohndeKleer和SeelyBrown在设计一个电路教学系统时发现,以常规的数学模型和仿真方法难以使学生很快明白电路的工作过程,而在实际教学中,老师并不是先给出数学公式,而是先讲解电路的工作原理,采用定性的描述方法,那么是否可以用计算机来模拟这一方法呢?同样在许多的实际工作中,人们更多的是依靠这种对系统原理性的理解,而这种理解的基础就是定性知识。很多专家学者开始探索如何在数字仿真中引入定性知识。1983年,JohndeKleer和SeelyBrown发表了有关定性仿真的第一篇论文AQualitativePhysicsBasedOnConfluence?[1],产生了巨大反响,揭开了定性仿真研究热潮的序幕。美国麻省理工学院的KennethD.Forbus则对定性仿真理论作了全面的总结[2];1986年美国德州大学的BenjaminKuipers在QualitativeSimulation”一文中提出了动态仿真算法QSIM[3],使定性仿真接近于实用。1984年人工智能杂志第一次出版了关于定性问题的专集。此后定性问题的研究成为人工智能和系统建模与仿真领域的一个热点,许多学者加入到这一研究领域中,产生了大量的研究成果。1991年,人工智能杂志又出版了有关定性推理的第二本专集,标志着该领域理论研究逐渐成熟并且向应用领域扩展。90年代以来,该领域的研究情况可谓方兴未艾,在IEEE的相关杂志上和撊斯ぶ悄軘等国际刊物上经常可以看到定性仿真方面的研究成果。国内该领域的研究起步较晚,目前从事定性理论研究的仅限于少数院校的少数研究者。定性仿真产生之后,在理论上出现了百家争鸣的局面,研究者们根据自己的见解提出了各自的建模和仿真理论。目前,基本可分为三个理论派别,即模糊仿真方法、基于归纳学习的方法和朴素物理学方法。模糊数学方法可以解决模型信息与测量数据的不确定性,所以在定性理论中一般用来作为一种描述手段。最初,系统的定性值是采用区间模糊数的行为来描述的,英国的QiangShen进一步将其发展到用凸模糊数来描述定性值[4],在数据表示上前进了一大步。此后,又有人在其基础上引入了概率论,来度量生成的多个行为的可信度。当前的模糊定性理论,在模糊数表示方面都存在一大弱点,那就是系统真实值与模糊量空间的映射问题,即如何确定描述系统的模糊量。归纳推理法是定性仿真的一个新方向,它起源于通用系统理论,主要利用其中的通用系统问题求解(GeneralSystemProblemSolve)技术。输入尽可能多的行为,通过归纳学习的方式,构造系统的定性模型,进行仿真研究。归纳推理法最突出的优势在于它完全不需要对象系统的结构信息,不需要预先提供任何模型。但是,这种方法需要采集大量的数据并处理和维护;而且,由于现实条件的限制,不能保证归纳的完备性。朴素物理方法在理论和应用上发展得最为成熟,它兴起于一些人工智能专家对朴素物理系统的定性推理研究。根据建立系统定性模型的方法,又可分为很多派别,比较有影响的有:SeelyBrown和JohndeKleer提出的基于摿鲾的概念的理论,K.D.Forbus的定性过程理论,B.J.Kuipers基于约束的用定性微分方程描述的定性仿真理论等。2定性仿真的应用现在,定性仿真技术与物理、化工、生态、生物、社会等学科相互渗透、结合,在系统监测、故障诊断、系统行为分析、解释以及预测等方面发挥着越来越大的作用。国外文献报导较多而且应用取得成效比较明显的应用领域主要有:工程和工业过程;电子电路分析和故障诊断;医药和医疗诊断;社会经济领域。下面有选择地按照应用领域介绍其中比较典型的项目。2.1工程和工业过程这里工程指传统的工程领域及一些工程设备,如蒸馏塔、高压锅炉、汽轮机等人造设备;工业过程指一些连续系统,如机械制造、发酵、化工过程和电站等。这方面的应用项目比较多见。计划中的一个项目[5],项目领导者是苏格兰的Heriot-Watt大学的Leitch.R,完成于1993年7月。此项目建立了定性动态模型,应用于过程监测与故障诊断。Leitch等人建立了一个基于定性微分方程(QDE)和模糊量空间的定性仿真器:Fusim,现已应用在输配电网络和化工厂蒸馏塔的过程监控、分析、诊断上。ESPRIT计划中另一应用定性推理的重要项目是:TIGER工程-汽轮机的监测、诊断系统[6]。现已应用在Exxon化工厂的大型工业汽轮机以及Dassault航空中心的宇宙飞船辅助动力单元。系统应用定性仿真来预测汽轮机启动及负载改变时的可能行为。2.2电子电路分析和故障诊断定性仿真的一个很重要的应用领域便是电子电路分析和故障诊断。定性推理的先驱人物deKleer早在1976年便开发了使用定性知识研究电子线路的系统LOCAL,即根据电路部件已测知的正常行为和错误行为,分析实际行为和预测行为的不一致之处,然后指出电路的故障点。这种思想后来发展成了基于模型的故障诊断理论(model-baseddiagnosistherory)。时至今日,由于定性推理和仿真技术的不断进步,该应用领域的发展前景更为广阔。这类项目中,最为典型的是Dague.P等人开发的模拟电路故障诊断工具-DEDALE[7]。Dague对该系统进行了一系列实验,声称:DEDALE系统能诊断出电路故障的75%,另外的25%故障没有构成对电路性能的显著影响,并且可以通过其他手段检测出。ElectroniqueSergeDassault继续这个领域的研究工作,已推出一个名为“DIAGMASTER”的商业化产品。PS:以上内容由北大青鸟佳音旗舰王老师从网络整理